Simulation of High-contrast Polarimetric Observations of Debris Disks with the Roman Coronagraph Instrument
Abstract:
The Nancy Grace Roman Space Telescope Coronagraph Instrument will enable the polarimetric imaging of debris disks and inner dust belts in the optical and near-infrared wavelengths, in addition to the high-contrast polarimetric imaging and spectroscopy of exoplanets. The Coronagraph uses two Wollaston prisms to produce four orthogonally polarized images and is expected to measure the polarization fraction with measurement errors <3% per spatial resolution element. In this talk, I will present the pipeline developed for simulating the polarization observations through the Hybrid Lyot Coronagraph (HLC) and Shaped Pupil Coronagraph (SPC) of the Roman. We model disk scattering, the coronagraphic point-response function, detector noise, speckles, jitter, and instrumental polarization, and calculate the Stokes parameters and output polarization fraction. To illustrate the potential for discovery and a better understanding of known systems with both the HLC and SPC modes, we model the debris disks around Epsilon Eridani and HR 4796A, respectively. The Coronagraph design meets the required precision, and forward modeling is needed to accurately estimate the polarization fraction.