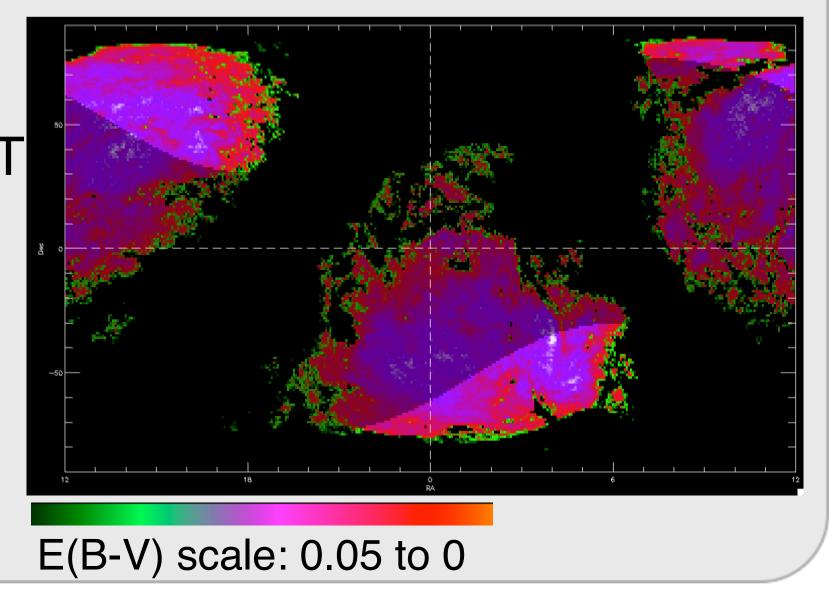


WFIRST: Science from Deep Field Surveys

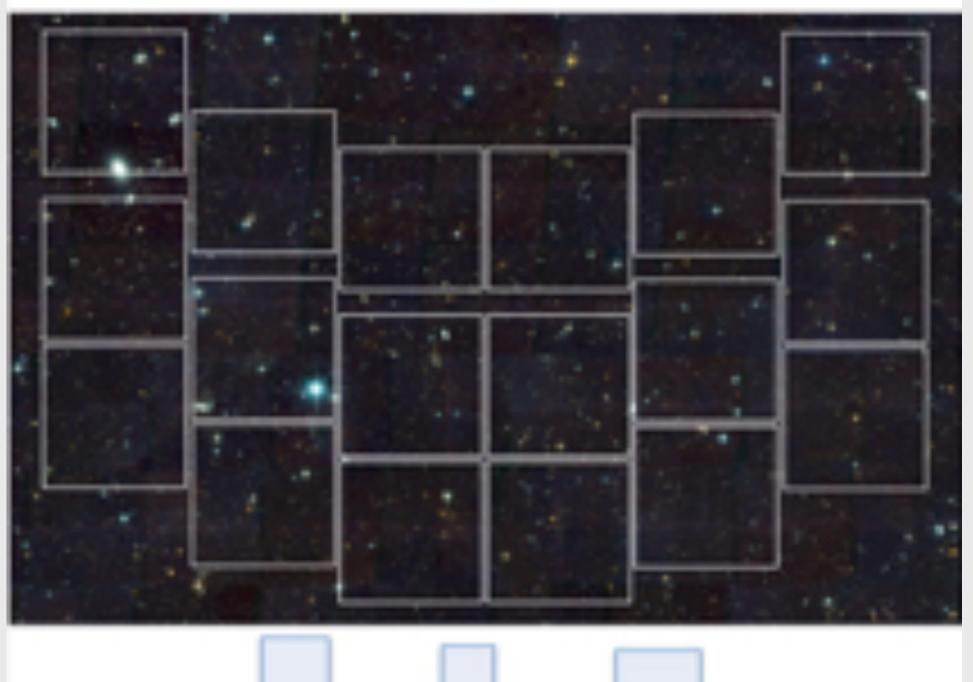
WFIRST Deep Field Working Group:

A. M. Koekemoer¹, R. Foley² (co-chairs), P. Capak³. O. Dore⁴, H. Ferguson¹, C. Hirata⁵, A. Kim⁶, J. Kruk⁷, D. Marrone⁸, J. Newman⁹, J. Rhodes⁴, B. Robertson², D. Rubin¹, D. Spergel¹⁰, R. Windhorst¹¹ ¹STScl, ²UCSC, ³Caltech, ⁴JPL, ⁵OSU, ⁶LBL, ⁷GSFC, ⁸UofA, ⁹UPitt, ¹⁰Princeton, ¹¹ASU


WFIRST will enable deep field imaging across much larger areas than those previously obtained with Hubble, opening up completely new areas of parameter space for extragalactic deep fields including cosmology, supernova and galaxy evolution science. The instantaneous field of view of the Wide Field Instrument (WFI) is about 0.28 square degrees, which would for example yield an Ultra Deep Field (UDF) reaching similar depths at visible and near-infrared wavelengths to that obtained with Hubble, over an area at least 100 times larger, for a comparable investment in time. The WFIRST Deep Fields Working Group has been examining the science considerations for various types of deep fields that may be obtained with WFIRST, and present here a summary of the various properties of different locations in the sky that may be considered for future deep fields with WFIRST.

Potential Deep Dield Science

- Reionization and the role of faint galaxies
- Large scale structure at high redshift
- Clustering constraints on DM halo mass
- SFR, metallicity indicators for galaxy evolution


Extinction and WFIRST Deep Fields

Extinction map: Black is E(B-V) > 0.05, while extragalactic WFIRST Deep Fields ideally fall in E(B-V) < 0.05 (coloured regions). CVZ zones (N,S ecliptic) are shaded brighter, and are suited for SN science

WFIRST Field of View

WFIRST offers sensitivity comparable to Hubble and 0.11" resolution over a 0.28 sq deg field of view that is 100x the field of Hubble's visible cameras.

- Large SN samples to constrain cosmology
- Evolution of faint AGN through reionization

HST/ACS HST/WFC3 JWST/NIRCAV

WFIRST/WFI FOV vs other instruments on HST and JWST. Each of the 18 individual white boxes represents one detector in the WFI FOV.

Representative Extragalactic Survey Fields

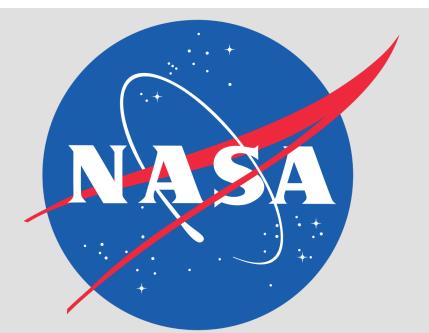
There are a considerable number of extragalactic survey fields currently in existence with good ancillary data and/or desired schedulability properties.

Currently it is envisioned that a very small number of locations (eg 1 or 2) would be considered for a deep field program.

The list of fields presented here, and discussed by the Working Group to date, is not exhaustive but can be considered

Field	R.A.	Dec.	Ecl. Lat.	Area	E(B-V)	Rel. Zodi	Days/Year	
	CVZ fields (< 36°)							
IRAC Dark Field	17:40	+69:00	+87	0.2	0.043	1.0	365	
Extended Groth Strip	14:17	+52:30	+60	0.2	0.009	1.2	365	
GOODS-N	12:36	+62:13	+57	0.25	0.012	1.2	365	
Deep2A	16:52	+34:55	+57	1	0.018	1.2	365	
Elias N-2	16:46	+41:01	+63	5	0.014	1.1	365	
Elias N-1	16:11	+55:00	+73	9	0.008	1.0	365	
Akari Deep Field South	04:44	-52:20	-73	12	0.008	1.0	365	
NEP-JWST-GTO-TDS	17:22	+65:49	+86	0.2	0.042	1.0	365	
NEP-Spitzer	18:00	+66:33	+90	10	0.046	1.0	365	
SEP-Spitzer	06:00	-66:33	-90	10	0.062	1.0	365	
	Non-CVZ fields							
CDFS	03:32	-27:48	-45	0.3	0.008	1.4	229	
Deep2B	23:30	+00:00	+3	1	0.044	19	146	
SSA22	22:17	+00:24	+10	4	0.056	5.6	149	
COSMOS	10:00	+02:12	-9	2	0.018	6.0	148	
VVDS14h	14:00	+05:00	+16	4	0.026	3.6	153	
Elias S-1	00:35	-43:40	-43	7	0.008	1.5	215	
Bootes	14:32	+34:16	+46	9	0.016	1.4	236	
Lockman Hole	10:45	+58:00	+45	11	0.011	1.4	229	
XMM-LSS	02:31	-04:30	-18	11	0.024	3.2	155	
SPT Deep	23:30	-55:00	+46	100	0.010	1.4	236	
HERA	07:00	-30:43		1200				

Current Considerations


- SN science would benefit most from CVZ:
 - Zodi, E(B-V), and schedulability all work against non-CVZ
 - Examining pros/cons of CVZ-S vs N (impacted primarily by availability of various ground-based facilities/instruments)
- Galaxies, AGN, and LSS science can be broadly accommodated by two types of "deep field":
 - "Medium" deep field, similar size to SN field (~10 deg²)
 benefit from being located on SN field; may include grism
 - "Ultra deep" field, smaller size (eg ~1 sq deg) can be more easily decoupled from SN fields and placed elsewhere, with ancillary data important (incl non-CVZ fields, eg CDFS etc)

representative of current fields; addition	nal
fields could be included for consideration	ion if
there is sufficient justification	A rep

A representative selection of fields discussed by the Working Group to date. Additional fields could be considered if warranted.

Ancillary & ground-based facilities are important in all cases

Please contact any of the Working Group members for further details or to engange in current discussions and considerations.

