Black Holes in the Cosmic Web: Evolution of AGN, Galaxies, and Large-Scale Structures in the Era of WFIRST

Ryan C. Hickox Dartmouth College AAS Splinter Meeting 10 January 2018

Dartmouth

Hubble Sized Mirror with a Survey Sized Camera

Hubble Space Telescope

- 14,000+ research publications w/ > 600,000 citations
- 2.5 new published papers per day
- 1000+ scientific proposals per year
- Training of over 1000 grad students and 600 PhD thesis
- Countless scientific breakthroughs

The Sloan Digital Sky Survey

- 5000+ research publications, w/ > 245,000 citations
- 1000+ astronomer user community
- 14,000 sq deg survey cataloged >1 billion objects
- Created the most detailed map of the Universe to date

Sloan Digital Sky Survey

Miguel A Aragon (JHU), Mark Subbarao (Adler P.), Alex Szalay (JHU)

Time since the Big Bang: 5.1 billion years

Evolution of supermassive black holes

What is the origin of supermassive black holes?

What is their role in the evolution of galaxies and large-scale structuers?

AGN are rare!

Hubble XDF

Chandra 7 Ms Deep Field (Luo et al. 2017)

.

•

٥

AGN are stochastic!

Probing the distant Universe at high resolution

Hubble Space Telescope

- 14,000+ research publications w/ > 600,000 citations
- 2.5 new published papers per day
- 1000+ scientific proposals per year
- Training of over 1000 grad students and 600 PhD thesis
- Countless scientific breakthroughs

Studying large samples of objects

The Sloan Digital Sky Survey

- 5000+ research publications, w/ > 245,000 citations
- 1000+ astronomer user community
- 14,000 sq deg survey cataloged >1 billion objects
- Created the most detailed map of the Universe to date

WFIRST Spectroscopy at the Peak of Cosmic Star Formation

2. Black hole growth and large-scale structures

3. The dawn of black holes

1. Black hole fueling in galaxy mergers

1. Black hole fueling in galaxy mergers

0.5 Gyr

10 kpc

Stars

FIRE simulations (courtesy P. Hopkins)

Are AGN more likely to be found in mergers than "normal" galaxies?

HES

Urrutia et al. (2008) Treister et al. (2012) Glikman et al. (2015)

Cisternas et al. (2010) Schawinski et al. Kocevski et al. (2012) Villforth et al. (2014, 2017)

IFOBSCURED

Kocevski et al. (2015) Ricci et al. (2017)

Kocevski et al. (2015)

Are all mergers more likely to host AGN than all "normal galaxies"

SDSS (Ellison et al. 2011, 2013; Weston et al. 2017) z < 0.1

Subaru Hyper-Suprime Cam (Goulding et al. 2017) z < 0.9

See discussion in Hickox et al. (2014)

Simulated WFIRST HLS image

2. Black hole growth and large-scale structures

Time since the Big Bang: 5.1 billion years

XBootes/AGES (S. Murray/C. Kochanek)

Clustering tells us dark matter halo mass

31.25 Mpc/h

TheWhat happens at higher *z*?

AGN clustering and environment provides an important constraint Meon black hole feedback models (e.g., Izquierdo-Villalba 2017)

Alexander & Hickox (2012)

Also, weak lensing can provide a valuable independent constraint on AGN halo masses (e.g. Mandelbaum et al. 2009; DiPompeo et al. 2017)

3. The dawn of black holes

Smith, Bromm & Loeb (2017)

Hirano et al. (2017)

The earliest supermassive black holes, more than 1 billion times more massive than the Sun, are observed when the Universe is less than a billion years old How did these black holes form? There are many potential pathways.

X-RAY OBSERVATORY

The Dawn of Black Holes

The Invisible Drivers of Galaxy and Structure Formation

The Energetic Side of Stellar **Evolution and Stellar** Ecosystems

Simulated deep Lynx HDXI image

X-ray observations with *Lynx* can find the earliest growing black holes, at redshift up to 10 or higher, covering up to a full square degree. Infrared observations with WFIRST will be critical for associating high redshift

Simulated WFIRST deep field (illustris; Snyder et al. (2017)

To understand the co-evolution of black holes and galaxies we need to:

Probe the distant Universe at high resolution

Hubble Space Telescope

- 14,000+ research publications w/ > 600,000 citations
- 2.5 new published papers per day
- 1000+ scientific proposals per year
- Training of over 1000 grad students and 600 PhD thesis
- Countless scientific breakthroughs

Study large samples of objects

The Sloan Digital Sky Survey

- 5000+ research publications, w/ > 245,000 citations
- 1000+ astronomer user community
- 14,000 sq deg survey cataloged >1 billion objects
- Created the most detailed map of the Universe to date

