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Recent	Progress	in	Exoplanet Science	
and	Technology	has	been	Staggering!
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• Often detecting the oddballs first ! (e.g. neutron star planets, 51 Peg, HR 8799)
• Complementarity in terms of parameter space accessible (mass, period and age)



“Vis	Unita Fortior”	(Unity	makes	strength)

• Complementarity	in	terms	of	physical	information:	e.g.	Mass	(RV)	and	Radius	
(Transits)

Different	techniques	generally	answer	different	questions
in	exoplanet research		

Dressing et al. 2015
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• Exoplanets
demographics around 
very young stars 

✔ ✔ N

• Mass vs luminosity for 
very young planets

✔ ✔ N

• Full orbital and spin 
rotation properties
(eccentricty, spin 
velocity and obliquity)

✔ ✔ ✔ ✔ Y/N

• Properties of CS dust 
(exozodi and exo-
Kuiper belts) vs
system’s age

✔ N

• Exo-moons and 
exoplanet rings

✔ ✔? ✔ ?

How do Planets Form & Evolve?

✔ : Partially Respondent             ✔ : Fully Respondent



How	Normal	or	Unusual	is	our	Solar	System?

Radial
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?

• Basic Exoplanets
Characteristics and 
Demographics 
(M,r,a,e)

✔ ✔ ✔ ✔ ✔ N

• Dependence on 
stellar properties ✔ ✔ ✔ Y

• Characterize entire 
planetary systems ✔ ✔ ✔ Y



What	are	the	Physico-Chemical	Characteristics	
of	Exoplanets Atmospheres	and	Interiors?
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• Abundance of 
chemical elements ✔ ✔ Y/N

• T,P profiles ✔ ✔ Y/N

• Global circulation, 
oblateness,
differential rotation, 
clouds

✔ ✔ Y/N
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• Frequency of rocky 
planets in the HZ ✔ ✔ ✔ ✔ ✔ Y

• In the HZ and with 
liquid water ✔ ✔ Y

• Measure dividing 
line btw terrestrial
and giant planets

✔ ✔ ✔ ✔ ✔ N

• How common is life 
on exo-Earths? ✔? ✔ Y(?)

How Common or Rare 
are Earth-like planets?



Direct	Imaging	is	the	last	Characterization	Technique	
to	come	online	but	also	the	most	powerful	one	(I)

Marois et al. 2010

Oppenheimer et al. 2013

• High	scientific	value	of	isolating	the	source	for	fine	characterization:	
– full	orbit	determination
– measurement	of	emergent	spectra	in	multi-planet	systems
– planet-disk	interaction



• Already measuring	spin	velocity	of	b Pic	b	via	high	resolution	(R=105)	
spectroscopy!

Direct	Imaging	is	the	last	Characterization	Technique	
to	come	online	but	also	the	most	powerful	one	(II)

Snellen et al. 
VLT /CRIRES, Nature, 

2014

Planet CO line blue-shifted 
by 15 km/s

~ 25km/s rotational 
broadening
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WFIRST
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WFIRST	CGI	Primary	Science	Goals:	Planets	

üDetects	planets	spanning	a	range	of	physical	properties,	probing	populations	
beyond	the	limits	of	current	surveys	

• Direct imaging of 
planets around 
mature stars

• Jupiter analogs
• Warmer Jupiters
• Sub-Neptunes and 

Super-Earths

Credit: D. Savransky and E. Neilsen



WFIRST	CGI	Primary	Science	Goals:	Planets	

üUse	broad-band	photometry	to	provide	initial	discriminators	for	the	nature	
of	the	planet	and	explore	planetary	diversity

üUse	spectroscopy	to	explore	composition	/	metallicity,	cloud/hazes	
formation	as	a	function	of	stellar	distance:	giant	planets

Cahoy et al. 2010
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WFIRST	CGI	Primary	Science	Goals:	Planets	

üUse	broad-band	photometry	to	provide	initial	discriminators	for	the	nature	
of	the	planet	and	explore	planetary	diversity

üUse	spectroscopy	to	explore	composition	/	metallicity,	cloud/hazes	
formation	as	a	function	of	stellar	distance:	sub-Neptunes and	super	Earths

• reflected light spectra of 
cold super-Earths 
(~200K) shall be more 
informative than flat 
transit transmission 
spectra (e.g. cold GJ 
1214b)

Credit: C. Morley et al.  (2015)



WFIRST	CGI	Primary	Science	Goals:	Planets	

üWatch	out	for	phase	effects!!

üBroad-band	colors	are	not	enough	to	discriminate	between	the	effects	of	
planet	separation,	composition,	metallicity and	phase	(Cahoy et	al.	2010)

üUse	orbital	info	and	R=50-70	spectroscopy

0, 30, 60, 90, 120 and 150°



WFIRST	CGI	Primary	Science	Goals:	Debris Disks	

ü Image exo-zodiacal disks at ~10x solar level, identifying gaps and 
bright structures in the HZ (close stars) and outside

ü Study the inner region (HZ to 10 AU) of known massive extended 
debris disks

ü Study the inner region (HZ to 10 AU) of warm disks discovered in 
the IR but not resolved

ü Conduct planet formation and dynamical evolution studies, 
including planet/disk interactions

• 47 Uma + 30 zodi disk detected at low 
SNR in multiple resolution elements

• Planets b(2.1 AU) and c (3.6 AU) easily seen

b Pic (Lagrange et al. 2010)

Traub et al. 
2016



Stringent	contrast	requirements
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• Requires contrasts of 
~10-9 at small inner 
working angles (a few 
l/D) in the visible

• 5x closer in and 100x 
deeper than state of 
the art

Traub et al. 
2016

GPI’s 51 Eri b (Macintosh et al. 2015)

lv/D  2.5lv/D  



WFIRST	Coronagraph	Architectures

• Broad-band Imaging: Hybrid Lyot Coronagraph (HLC)

• IFS Spectroscopy: Shaped Pupil Coronagraph (SPC)

• Back Up: Phase Induced Amplitude Apodization Complex Mask 
Coronagraph (PIAACMC) 



Hybrid	Lyot Mode

WFIRST	HLC	Configuration	(cycle	6)
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Shaped	Pupil	Mode

WFIRST	SPC	Configuration	(cycle	6)
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WFIRST CGI Broad-band Imaging and Spectroscopy

• ~4 broad-band 
imaging filters

• IFS measurements 
in 3 filters

• Still in the works 
(SITs)

(Traub et al. 2016)



Science	yield	estimates	
vs instrumental	performance	(Traub et	al.	2016)
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Challenges:	Wavefront Sensing	
and	Control	– LOS	jitter
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0.4 mas rms in 1ms



WFIRST	LOWFE	Sensing

In theory you can get <100 pm residual  LOWF (Z4-Z11 total rms) estimation 
error in 100s on V=6 star, providing telescope wavefront drifts allow it, 

i.e are not faster 

80pm rms in 
10s

Fang Shi (JPL)
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WFIRST CGI Optical Layout and WF Control Loops

-- Two 48 x 48 DMs (A,f) used for initial Dark Hole generation
-- LOWFS/C loops (tip-tilt, focus, coma, astigmatism, trefoil)

Wheel mechanisms alternating btw different filters and
Coronagraphs for BB imaging and IFS spectroscopy



Challenges:	“Unfriendly	Aperture”

29

“Only a (her) mother 
could love this pupil”



Step 1: Laboratory Testing under relevant conditions: AFTA 
pupil, dynamic environment, broad-band, vacuum, low flux
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MS
#

Milestone Date

1
First-generation reflective Shaped Pupil apodizing mask has been fabricated with black 
silicon specular reflectivity of less than 10-4 and 20 µm pixel size. 7/21/14

2
Shaped Pupil Coronagraph in the High Contrast Imaging Testbed demonstrates 10-8 raw 
contrast with narrowband light at 550 nm in a static environment. 9/30/14

3 First-generation PIAACMC focal plane phase mask with at least 12 concentric rings has 
been fabricated and characterized; results are consistent with model predictions of 10-8

raw contrast with 10% broadband light centered at 550 nm.

12/15/14

4
Hybrid Lyot Coronagraph in the High Contrast Imaging Testbed demonstrates 10-8 raw 
contrast with narrowband light at 550 nm in a static environment. 2/28/15

5
Occulting Mask Coronagraph in the High Contrast Imaging Testbed demonstrates 10-8

raw contrast with 10% broadband light centered at 550 nm in a static environment. 9/15/15

6 Low Order Wavefront Sensing and Control subsystem provides pointing jitter sensing 
better than 0.4 mas and meets pointing and low order wavefront drift control 
requirements.

9/30/15

7 Spectrograph detector and read-out electronics are demonstrated to have dark current 
less than 0.001 e/pix/s and read noise less than 1 e/pix/frame. 8/25/16

8 PIAACMC coronagraph in the High Contrast Imaging Testbed demonstrates 10-8 raw 
contrast with 10% broadband light centered at 550 nm in a static environment; contrast 
sensitivity to pointing and focus is characterized. 

9/30/16

9
Occulting Mask Coronagraph in the High Contrast Imaging Testbed demonstrates 10-8

raw contrast with 10% broadband light centered at 550 nm in a simulated dynamic 
environment.

9/30/16

DONE

DONE

DONE

DONE

DONE

DONE
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Where	do	we	stand:	successful	laboratory	testing	with	AFTA	
pupil,	static environment,	broad-band,	under	vacuum

Milestone	5
Occulting	Mask	Coronagraph	(HLC	or	SPC)	in	the	High	
Contrast	Imaging	Testbed	demonstrates	10-8 raw	
contrast	with	broadband	light	(10%)	at	550	nm	in	a	
static	environment

Results					
Both	shaped	pupil	and	hybrid	Lyot	coronagraphs		
have	demonstrated	repeatable	convergence	to	
<9×10-9 mean	contrast	across	a	3-9	λ/D	dark	hole	in	
broadband	light	(10%)	centered	at	550	nm

Next	Laboratory	(HCIT)	Tests	coming	in	FY	17
• Dynamic	(OTA)	testing,		
• low	flux,	
• with	IFS
• Push	below	10-8	raw	contrast?	



Step	2:	End-to-end	Simulations	of	full	observing	sequence	
and	advanced	data	post-processing	(KLIP	PCA	etc)

DMs Coronagraph

LOWFSFocus correction

Z5 – Z11 correction

Jitter correction

FSM FCM

PROPER (Krist et al.)

Thermal
Model

Structural
Model

Wavefront
Changes

• 8.3 hrs on β UMa +13° roll, bright star (V=2.4, A1IV)
for dark hole generation

• 13.9 hrs on 47 UMa +13° roll = science target (V=5.0, G1V)

• 13.9 hrs on 47 Uma @ -13° roll

• 13.9 hours on reference star (not used)

Observing scenario “OS5”:
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PP of Simulated OS5 HLC Data
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Credit: Ygouf, Pueyo, Zimmerman, Soummer (work managed by CGI project at JPL)



Post-processing of Simulated OS5 HLC Data

Also looked at spectral extraction using post-
processing of simulated raw SPC (OS3) data 35



• WFIRST CGI will provide first spectra of cold giant planets and 
mini-Neptunes in orbit around mature (sun-like) stars

• WFIRST CGI may provide first spectra of a few super-Earths 
around nearby mature (sun-like) stars

• WFIRST CGI will image exozodiacal disks at ~10x solar 
systems levels in the visible, in the HZ of nearest stars

• Laboratory testing on track and encouraging end-to-end 
simulations results so far (but still a tough pupil for HCI)

• WFIRST CGI will mature many key technologies to TRL 9 in 
preparation for future exoplanet imaging mission concepts 
such as HabEx and LUVOIR (e.g. high contrast space coronagraphy
on complex aperture, active WFS/C in space, large DMs, extra low noise 
detectors)

For a lot more details about the art of coronagraphy, 
please come to Dimitri Mawet’s tutorial on October 24!

SUMMARY



Back-Up



A	lot	of	work	ahead	to	close	the	loop	between	science	and	engineering:	
Observation	Scenario	Simulations	Interface	(project	@	JPL	/	IPAC	/SITs)

Project	(JPL/IPAC)	receives	inputs	from	the	SITs	(specifying	all	parameters	defined	in	IPAC’s	
template)		and	delivers	simulated	science	data	for	analysis	by	SIT	and	Science	Community

Instrument	Parameters	Definition
• Timing	and	pointing	sequence:	slew	/	stare	

times,	WF	temporal	sampling,	rolls	…
• Filter,	Coronagraph,	Imager	or	IFS
• LOWFC	on	/	off
• Modeling	assumptions	(jitter,	detector)	

Simulated	Observations	Template

Integrated	Modeling
• Thermal/Structural/Optical	(from	Libraries)	
• LOWFS	&	C
• DM	and	coronograph simuls
• Detector	effects	…

Observatory	characteristics	
• Jitter	sequence	
• Orbit	…

Astrophysical	Scene	Def.
• Stellar	characteristics	(for	Sci

target	and	reference	star)
• Background	Stars	and	Galaxies
• ExoPlanets characteristics	
• Exozodiacal Light

Synthesizing	Raw	(L0)	Data
• Sequence	of	Images
• Sequence	of	IFS	data
• Ancillary	Telemetry	(LOWFS)	…

L1	Data	Processing
• Calibration	of	detector	effects	
• IFS	datacubes extraction

L2	Data	Processing
• PSF	subtraction
• Estimates	of	Exoplanets/	Disks	

characteristics	&	detection	significance

Science	Yield	
Estimation

SIT	/	Science	Com.		
IPAC
JPL
GSFC
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On-going	work	
(J.	Krist,	in	collab.	with	GSFC	and	Nemati’s IM	group)	
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