Public Microlensing Analysis Tools and Survey Data

Savannah R. Jacklin and Calen B. Henderson

Four Parts

Data
 Analysis Tools (Code)
 Data Challenge
 What you can do

Microlensing in the Era of WFIRST

- WFIRST will spend 1/3 of its time on a near-infrared (NIR) microlensing survey
 - Microlensing observations focus on the central Galactic bulge
- Microlensing-source.org

Microlensing-source.org is your one-stop shop for all things microlensing

Microlensing Observation in Astrophysics (MOA)

- Dedicated high-cadence microlensing survey
 - Upcoming data release of 9 years baseline data (2006—2014)
- Good longitudinal coverage in conjunction with OGLE
 - High quality data compared to many alert light curves

Korea Microlensing Telescope Network (KMTNet)

- Wide field photometric survey observing central Galactic bulge
- 2015 and *K2*C9 data are currently public, rest to follow
- Dedicated and continuous monitoring of the center of the Galaxy helps us understand event rate, types of planets, etc.

The United Kingdom Infrared Telescope (UKIRT)

- 3.8m Telescope on Mauna Kea in Hawai'i
- Survey Area: 10.5 deg²
- Duration: 2015—2019
- Cadence: 1—3 epochs/night
- Filters: *H* and *K*
- Overlap with OGLE IV Microlensing survey

UKIRT Field Map

8

UKIRT Microlensing Survey

- Use mock microlensing injections to determine NIR detection efficiency and event rate at Galactic center (Jacklin et al. 2019 in prep)
- Data are made publically available within six months of end of the observing period on the NASA Exoplanet Archive
 - 2018 data available by the end of the month

Precursor microlensing observations for WFIRST are available for YOU to play with today

NASA Exoplanet Archive

- Construction of first publically available comprehensive database of microlensing model parameters
 - Project conducted by Caltech SURF student Naylynn Tañón
 - Includes all statistically indistinguishable degenerate model solutions

	N N/	NASA EXOPLANET ARCHIV NASA EXOPLANET SCIENCE INSTITUTE					
		Home	About Us	Data	Tools	Sup	
•	Select Columns 🔄 Download Table 🕥 Plot Table 🔎 View Documer						
•		Row ID Planet Name		ame	Planet Mass [Earth mass]	Planet-star Projected Semi- major Axis [AU]	Lens Mass [Solar mass]
		?		?	2	?	2
	\checkmark	1	OGLE-2012-BLG-002	6Lb 🕕	46.1±2.6	4.0±0.5	1.06±0.05
	\checkmark	2	OGLE-2003-BLG-235	Lb 🕕	830 ⁺³⁰⁰ ₋₂₀₀	4.3 ^{+2.5} _{-0.8}	0.63 +0.07 -0.09
	\checkmark	3	MOA-2011-BLG-262L	b 🕕	17 ⁺²⁸ -10	0.95 +0.53 -0.19	0.11 +0.21 -0.06
	\checkmark	4	OGLE-2005-BLG-169	Lb 🕕	14.1±0.9	3.5±0.3	0.69±0.02
		5	MOA-2010-BLG-117L	b 🕕	170±32	2.42±0.26	0.58±0.11
	\checkmark	6	OGLE-2012-BLG-056	3L b 🕕	120 ⁺⁴⁴ -73	0.74 +0.26 -0.42	0.34 +0.12 -0.20
	\checkmark	7	MOA-2010-BLG-328L	.b 🚺	9.2±2.2	0.92±0.16	0.11±0.01

The Exoplanet Archive is the center of the public microlensing data universe

PyLIMA

- https://github.com/ebachelet/pyLIMA
- Flexible, python-based, continuously adapted
- PSPL with options of higher-order effects
 More flexibility coming soon
- Tested and well-received at 2017 Sagan Summer Workshop

Etienne Bachelet, Valerio Bozza, and Rachel Street

MulensModel

- https://github.com/rpoleski/MulensModel
- Model magnification curves
- Goodness-of-fit statistics for microlensing events
 - single and binary lenses
- Higher-order effects
 - Extended sources with limb-darkening, annual microlensing parallax, and satellite microlensing parallax

Radek Poleski and Jennifer Yee

MuLAn and VBBinaryLens

• MuLAn

- https://github.com/muLAn-project/muLAn
- Another excellent fitting software for a variety of microlensing events
 - Clement Ranc and Arnaud Cassan

• VBBinaryLens

- MNRAS 479 (2018) 5157 and MNRAS 408 (2010) 2188
- What's under the hood of a lot of these light curve fitting routines
- Valerio Bozza

Microlensing Data Challenge

- 290 <u>Simulated</u> WFIRST light curves with variety of anomalies
 - GOALS:
 - 1. Distinguish single lens, binary lens, and planetary events from other variables
 - 2. Model the parameters of microlening events
- Participants encouraged to use publically available codes while adding their own twist
 - i.e., faster and better classification and fits

Results presented at upcoming Microlensing 23 meeting, tune in then for updates or join in the next challenge

What YOU can do today...

- Join the microlensing community
 - Looking to expand person power
- Potential for auxiliary science
 - Transients, single black hole mass function, choose your own adventure
- Synergies between facilities
 E.g., WFIRST and LSST

With all of these tools, you can choose your own (science) adventure

... in anticipation of tomorrow!

18