Results of Microlensing Data Challenge 1

R.A. Street, Las Cumbres Observatory

M. Penny, J. Yee, R. Poleski WFIRST MicroSIT Group 2

Though microlensing has been observed for a while, there are still a number of unsolved challenges with microlensing analysis

E.g. Triple lens systems Automated event classification Variable source microlensing

Though microlensing has been observed for a while, there are still a number of unsolved challenges with microlensing analysis

Analysis of multi-lens microlensing events has been historically time consuming, though major progress has been made in recent years

> E.g. Thorough but efficient searching of parameter space Distinguishing binary and triple lenses Disambiguating source variability from microlensing

Though microlensing has been observed for a while, there are still a number of unsolved challenges with microlensing analysis

Analysis of microlensing events has been historically time consuming, though major progress has been made in recent years

Current software and analysis process doesn't scale to large datasets

Concern over processing requirements for WFIRST

Microlensing analysis is personnel-limited

Need to attract new people, students to the field Need time for them to gain experience in modeling

Microlensing is personnel-limited

Would benefit from involvement of experts in mathematics, statistics, informatics

E.g. Other fields also search for best model in large parameter space \rightarrow Bring in new techniques

Microlensing is personnel-limited

Would benefit from involvement of experts in mathematics, statistics, informatics

Data Challenges have been successful in stimulating engagement and innovation in other fields including exoplanets

E.g. Radial velocity fitting challenge https://github.com/EPRV3EvidenceChallenge/Inputs Dumusque, X. et al. (2016), A&A, 593, 5 Dumusque, X. et al. (2017), A&A, 598, 133

Transit detection

CoRoT analyses challenge

Exoplanet atmosphere spectral analysis Hildebrant, S et al. http://adsabs.harvard.edu/abs/2018AAS...23115803H

Goals of Data Challenge 1

- Accurately model events
- Distinguish variable stars
 - Including "pathological" cases, eg. those which peak during gaps in the survey etc.
- Develop analysis process scalable to WFIRST datasets
- Encourage innovative approaches
- Bring new researchers into the field
 - Ideally from diverse backgrounds, e.g. statistics

Simulated Data

• Matthew Penny simulated the first dataset

Only he had access to the table of input parameters until after the submission deadline

293 WFIRST lightcurves in two filters (Z087 and W149)

74 Single lenses (including FFP candidates)
83 Binary star lenses
43 Planetary binary lenses
93 Cataclysmic variables
0 Non-variables

Simulated Data

- Set of 293 lightcurves
- WFIRST lightcurves = Cadence, length and noise mimicking the nominal multi-year mission length and cadence of the Bulge survey, two filters

Entering the Challenge

http://microlensing-source.org/data-challenge

Mailing list:
microlensing-data-challenge@lco.global

Github organization:
https://github.com/microlensing-data-challenge

Microlensing
Source
Overview
Learning
Glossary
Resource
Nearce
Opportunities
Software
Data Challenge

Microlensing Data Challenge

The analysis and modeling of microlensing events has always been a computationally-intensive and time-consuming task, requiring a powerful computer cluster as well as well sampled lightcurves. While the number of interesting events with adequate data remained fairly low, it has been practical to perform a careful interactive analysis of each one, often with the aid of a powerful computer cluster. Even so, a number of challenges remain, particularly concerning the analysis of triple lenses.

This is expected to change with next-generation surveys, especially with the launch of WFIRST. This mission is expected to detect thousands of microlensing events, including hundreds of planetary events. Clearly, our analysis techniques need an upgrade to fully exploit this dataset, and we encourage people from outside the current microlensing community to bring in diverse expertize.

Entry contents: Team contact details Table of fitted model parameters for each star Written documentation describing fitting process, hardware [optional] Graphical output

Four teams entered 16 people in total 7 "newcomers"

All entries were anonymized

4-person evaluation panel + non-voting chair (RAS): Rachel Akeson, IPAC Scott Gaudi, Ohio State Hyungsuk Tak, Harvard Eamonn Kerins, Manchester

Rachel, Matthew and panel members not permitted to participate in teams

A github organization was provided as a public forum through which questions could be posed and answered.

Programmatic comparison between each team's entry and simulation master table

Programmatic comparison between each team's entry and simulation master table

Comparison of fitted parameters for Team1

The table below compares the parameters obtained during the fitting process (black) with the true parameters used to simulate the datasets (grey, italics)

If a team provided several alternative models for a single dataset, these are represented by multiple entries with the same ModelID

'None' entries represent values missing from the team's table entry data.

Back to entry summary											
ModelID	Class	tO	tE	u0	rho	piE	$\mathbf{fs}_{\mathbf{W}}$	$\mathbf{fb}_{\mathbf{W}}$	$\mathbf{fs}_{\mathbf{Z}}$	$\mathbf{fb}_{\mathbf{Z}}$	s
ulwdc1_00	2 PSPL Binary_star	2459650.03355 ± 0.2432288499 2459648.31840479	55.2527260873 ± 8.4917345258 <i>36.8514</i>	0.7818939997 ± 0.1701036718 2.16671	None ± None 0.00104122	None ± None 0.0729903	59.2011595983 ± 23.7946204763 <i>0.413613</i>	1437.78721782 ± 23.776920539 2.852503507111193	45.529139359 ± 18.3081887461 0.557115	810.515447624 ± 18.29614764 1.558477832946977	None ± Non 0.325677
ulwdc1_00	4 USBL Binary_plane	2460024.22001 ± 0.0820564796 ^t 2460024.31690896	10.5138334848 ± 0.3966804041 6.6877	0.7376195568 ± 0.049117409 -1.52343	0.0293813664 ± 0.0061434232 0.00120717	None ± None 0.171343	47.4894608478 ± 5.2688112877 0.607462	304.554801836 ± 5.2679127284 1.2773515524873547	15.9822566229 ± 1.7903792031 0.744427	79.7004473245 ± 1.7911315991 0.8446015179946584	1.843624600 ± 0.032415774 2.48124
ulwdc1_00	5 PSPL PSPL	2459816.21546 ± 0.0016982558 2459816.21264422	1.7893880493 ± 0.0968700982 1.85542	0.074382326 ± 0.0051480273 -0.0712711	None ± None 0.00280589	None ± None 0.321621	12.1824876967 ± 0.8667417313 0.0206938	551.305006801 ± 0.8649149434 1188.2484362550706	4.3035231358 ± 0.3155290846 0.0242225	158.888516415 ± 0.3169077042 866.6305304269218	None ± Non None
ulwdc1_00	6 <mark>USBL</mark> Binary_star	2459651.85513 ± 0.00014 2459651.8548187	5.7205166855 ± 0.1265098915 5.31401	0.0052095829 ± 0.000121 -0.00588459	0.000314 ± 0.00045 0.000772343	None ± None 0.0902075	4.5936183648 ± 0.1093460461 0.0684179	69.3814569304 ± 0.1078596445 <i>106.46494240328049</i>	0.707314727 ± 0.0180179795 0.102309	6.7651987964 ± 0.0191512543 47.72488953238265	0.101764207 ± 0.002037278 0.113947
ulwdc1_00	8 USBL Binary_plane	2458728.97888 ± t 0.0782798178 t 2458729.060358196	24.6969140599 ±0.012271923 526.2846	0.9553988635 ± 0.0062206637 0.891991	0.0060379147 ± 0.005790243 0.000547291	None ± None 0.0852794	269.887440907 ± 3.2659930145 0.117726	1722.52821132 ± 3.2748087289 37.82059169457552	130.963101858 ± 1.8441740261 0.123387	798.231271522 ± 1.8660343201 34.64534799491492	1.964981072 ± 0.005348349 1.92159
ulwdc1_00	9 USBL Binary_star	2460010.3793 ± 0.0111140771 2459971.19486356	68.5770508011 ± 1.0854118002 74.0461	0.1339243004 ± 0.0036791371 -0.455631	0.0002158844 ± 19562.5973645534 0.00113586	0.294186215297 ± 0.0413956007609 0.0837776	315.271470443 ± 8.5666518598 0.306943	900.743222029 ± 8.5658655513 4.127217676764982	163.280300414 ± 4.4375477854 0.280945	524.529954616 ± 4.4383429874 5.0269384536568955	0.356605725 ± 0.002179945 4.65476
ulwdc1_01	2 USBL Binary plane	$2458598.60756 \pm 0.00207$	16.1039968738 ± 0.0218605962	0.0475759283 ± 7.59e-05	0.00166 ± 0.000588	None ± None 0 0714066	570.95653707 ± 1.3587459961	620.137900987 ± 1.3535267983	336.753036923 ± 0.840082427	308.858865384 ± 0.8431768844	1.035444269 ± 0.001636714

Comparison of simulated/true parameters highlights weaknesses (some known) in modeling process, e.g. tendency for u_0 (fitted) > u_0 (true)

Panel members awarded grades out of 5 in each category Accuracy of fitted model parameters Software/modeling process efficiency/scalability Innovations in approach Broadening the field

Each team will receive written feedback regarding the panel's conclusions

Some important but hard-to-evaluate criteria

True benchmarking not implemented for logistical reasons

Panel relied on documentation to evaluate process and innovative aspects

Evaluation supplemented by questionnaire to all teams, requesting specific information regarding e.g. computing resources used

Team Credits

Team 1	Contact: Etienne Bachelet	Markus Hundertmark Daniel Godines Charlotte Fling
Team 2	Contact: Valerio Bozza	
Team 3	Vandylions Contact: Geoffrey Bryden	Savannah Jacklin Rob Siverd Keivan Stassun Ryan Oelkers
Team 4	Contact: Clément Ranc	Arnaud Cassan Richard K. Barry Esther Euteneuer Stela Ishitani Silva Yiannis Tsapras

Accuracy in fitted parameters

Std.dev

Team	Combined scores	Rank
Team 1	16.17	1
Team 2	14.5	2
Team 3	7.83	4
Team 4	11.0	3

Overall, when events were properly classified, model parameters could be accurately derived, noting known weaknesses. Future work to investigate "un-modelable" events Classification problem non-trivial, particularly for subtle anomalies

3.72

Std.dev

Software/modeling process efficiency

1.65

Team	Combined scores	Rank
Team 1	13.5	1
Team 2	11.5	2
Team 3	9.5	4
Team 4	11.0	3

All teams used publicly available software New approaches to classification/detection in development, but early stage Effective progress on question of scalability, but room for improvement At least two teams required laptops/workstations rather than cluster computers

Innovation

Team		Combined scores	Rank
Team 1		14.5	3
Team 2		15	2
Team 3		8	4
Team 4		17	1
Std.dev	3.90		

Significant effort invested into development of modern, open-source software Some welcome attempts made to trial non-standard techniques Evaluation dependent on documentation provided

Broadening the field

Team	Combined scores	Rank
Team 1	12	3
Team 2	4.5	4
Team 3	14.5	1
Team 4	13.0	2

Std.dev

4.45

All but one of the teams included students and/or researchers whose previous work is primarily outside microlensing All teams included established microlensers More work to do to bring in "fully" new teams

Challenge 1 Next Steps

Panel written feedback will be sent to each team today

Paper documenting the challenge and entries underway All teams invited to collaborate Teams encouraged to send feedback on difficulties encountered Further analysis underway of team results, cause of "pathological" cases etc.

All teams are encouraged to publish independent papers as well

Github organization will remain open Challenge 1 dataset available for future tests etc Forum for questions

Lessons learned

While the processing of large datasets will be a concern for WFIRST, meaningful comparison between teams is difficult without formal benchmarking

- Requires standardized computing facilities
- Could be done with a cloud-based server and virtual environments but some cost associated with this.
- Best achieved in a hackathon-style targeted "mini-challenge" workshop

Lessons learned

Attracting researchers from outside astronomy/exoplanets was difficult, despite publicizing the challenge on a number of astro-statistics forums

- Recent LSST data challenge used Kaggle platform
 - attracted 1094 teams, most non-astro
- Drawbacks:
 - cost prizes expected
 - high overhead to prepare challenge dataset to meet platform requirements, avoid "leakage"
 - Kaggle is really designed for supervised classification challenges

Lessons learned

Attracting researchers from outside astronomy/exoplanets was difficult, despite publicizing the challenge on a number of astro-statistics forums

Entrants in recent Kaggle-run Data Challenges

Credit: Gautham Narayan

Next Challenge(s)

Photometry Challenge

WFIRST MicroSIT in the process of planning/developing data handling tools Timely to address optimal photometry from WFIRST simulated images

Data simulation work in progress; announcement will be made

Next Challenge(s)

Photometry Challenge

WFIRST MicroSIT in the process of planning/developing data handling tools Timely to address optimal photometry from WFIRST simulated images

Data simulation work in progress; announcement will be made

Mini-challenges

Short timescale (~week) challenges targeting a specific issue Options for resources such as cloud-servers Coordinated with other meetings as hack sessions

Thank you, participants and panel

Tiffany Meshkat and IPAC for support of the challenge and public codes