

WFIRST Special Session: Survey Complementarity

Rachel Bean Cornell University

Understanding why the universe is accelerating

- Aim: Connect phenomenological constraints to rich theoretical space with implications across many different environs
- Use distinct cosmological techniques
 - 1. Standard candles (SN)
 - 2. Standard rulers (CMB/BAO)
 - 3. Clustering of non-relativistic tracers
 - 4. Motion of non-relativistic tracers
 - 5. Lensing distortion of light
- Cover distinct redshifts and tracers
 - − z~0-3
 - LRGs, ELGs, QSOs, Lya, dwarf galaxies, CMB, clusters
- Leverage distinct systematics
 - Different wavelengths
 - Spectroscopic precision vs Photometric speed
 - Overlapping survey areas, different depths and wavelengths

Towards understanding gravity on cosmic scales

 $k^2 \Psi = -4\pi G_{\text{matter}} a^2 \rho \Delta$

- Non-relativistic: Galaxy positions & motions
 - Sensitive to ψ ~ G_{mat}
 - Biased tracer
 - Can be measured at specific z
- G_{matter} ≠1: can be mimicked by additional, dark sector clustering

$k^2(\Psi + \Phi) = -8\pi G_{\text{light}} a^2 \rho \Delta$,

- Relativistic: Weak lensing, CMB lensing & ISW
 - Sensitive to $(\phi+\psi)$: G_{light}
 - Direct tracer of potential,
 - Integrated line of sight info
- $G_{light}/G_{matter} \neq 1$: not easily mimicked.
 - potential smoking gun for modified gravity?

Proposal: Contrast both can get at G_{light}/G_{matter} (Zhang et al 2007)

Complementary tracers for testing gravity

 $k^2\Psi = -4$

- Non-relativistic: (motions
 - Sensitive to
 - Biased trace
 - Can be mea
- G_{matter} ≠1: can b∉ additional, dark :

Consider a spherical cow of radius R ...

100!

 $\pi G_{\text{light}} a^2 \rho \Delta$,

nsing, CMB lensing

+ψ): G_{light} f potential, e of sight info easily mimicked. cing gun for ity?

Proposal: Contrast both can get at G_{light}/G_{matter} (Zhang et al 2007)

Complications: Photometric redshifts

- Quicker (more galaxies) and concurrent with imaging, but less accurate than spectral z
- Challenge to refine photo-z estimates given disparate and incomplete spectroscopic samples
- Redshift probability distribution dispersed and biased relative to the true spectroscopic z.

$$\sigma_z = rms \left[\frac{\Delta z}{1 + z_{spec}}\right]$$

$$bias_z = mean\left[\frac{\Delta z}{1 + z_{spec}}\right]$$

Complications: Lensed galaxies

 Lensing distorts observed volume and magnifies faint galaxies (Moessner & Jain 1997)

$$n^{(i)}(\boldsymbol{\theta}) = n_{\mathrm{m}}^{(i)}(\boldsymbol{\theta}) + n_{\mathrm{g}}^{(i)}(\boldsymbol{\theta}) + n_{\mathrm{rnd}}^{(i)}(\boldsymbol{\theta}) ,$$

- Number depends on slope of luminosity function of galaxies in survey sample.
- Galaxy correlations must factor this in

$$\begin{split} C_{n_in_j} &= C_{g_ig_j} + C_{g_im_j} + C_{m_ig_j} + C_{m_im_j} & \text{Wolf et al 2003} \\ \text{Measured} & \text{Unlensed} & \text{Lensed galaxy} \\ \text{galaxies} & \text{contributions} \end{split}$$

Complications: Intrinsic alignments

• Galaxy Intrinsic shapes are aligned in their host halo

 $\epsilon^{(i)}(\boldsymbol{\theta}) = \gamma_{\rm G}^{(i)}(\boldsymbol{\theta}) + \gamma_{\rm I}^{(i)}(\boldsymbol{\theta}) + \epsilon_{\rm rnd}^{(i)}(\boldsymbol{\theta})$

• Observed shape correlations include both lensed and intrinsic terms

• The amplitude of intrinsic alignments is a function galaxy type, luminosity and redshift – currently leads to factor 4 uncertainty in % z~1 red galaxies

Complications: Shear calibration

• Incomplete correction of the atmospheric and instrumental PSF can induce additive and multiplicative shear errors

Multi-probe and survey approach

• Upcoming Surveys: Different strengths & systematics

Based on publicly available data

Stage IV	DESI	LSST	Euclid	WFIRST-AFTA
Starts, duration	~2018, 5 yr	2020, 10 yr	2020 Q2, 7 yr	~2023, 5-6 yr
Area (deg ²)	14,000 (N)	20,000 (S)	15,000 (N + S)	2,400 (S)
FoV (deg ²)	7.9	10	0.54	0.281
Diameter (m)	4 (less 1.8+)	6.7	1.3	2.4
Spec. res. $\Delta\lambda/\lambda$	3-4000 (N _{fib} =5000)		250 (slitless)	550-800 (slitless)
Spec. range	360-980 nm		1.1-2 mm	1.35-1.95 mm
BAO/RSD	20-30m LRGs/[OII] ELGs 0.6 < z < 1.7, 1m QSOs/Lya 1.9 <z<4< td=""><td></td><td>~20-50m Hα ELGs z~0.7-2.1</td><td>20m Hα ELGs z = 1–2, 2m [OIII] ELGS z = 2–3</td></z<4<>		~20-50m Hα ELGs z~0.7-2.1	20m Hα ELGs z = 1–2, 2m [OIII] ELGS z = 2–3
pixel (arcsec)		0.7	0.13	0.12
Imaging/ weak lensing (0 <z<2.)< td=""><td></td><td>~30 gal/arcmin² 6 visible bands 320-1080 nm</td><td>30-35 gal/arcmin² Broad visible band 550– 900 nm</td><td>68 gal/arcmin² 3 near-IR bands 927-2000nm</td></z<2.)<>		~30 gal/arcmin ² 6 visible bands 320-1080 nm	30-35 gal/arcmin ² Broad visible band 550– 900 nm	68 gal/arcmin ² 3 near-IR bands 927-2000nm
SN1a		10 ⁴ -10 ⁵ SN1a/yr z = 0.–0.7 photometric		2700 SN1a z = 0.1–1.7 IFU R=75 spectro.

Rachel Bean AAS WFIRST Special Session Jan 2016

Where does WFIRST fit in?

- Alone: Strong individual cosmological constraints to z~3.5
 - From deep photometric & multi-z spectroscopic surveys, plus extensive spectroscopic SN survey
- In combination: Important role in systematic mitigation
 - White paper: "The Whole is Greater than the Sum of the Parts: Optimizing the Joint Science Return from LSST, Euclid and WFIRST" <u>http://arxiv.org/abs/1501.07897</u>

Where does WFIRST fit in?

- Systematic mitigation from combined photometric, spectroscopic + Stage III CMB convergence data
 - Improved lensing measurements (IA and calibration constraints)
 - Broader redshift range of spectroscopic samples
- Improved photometric redshift calibration: multiple bands WFIRST 4-bands (J,H, F184, Y) and LSST (6-band ugrizy)
 - Halves scatter
 - 33% reduction in outliers (excludes calibration and deblending errors)

Where does WFIRST fit in?

- Improved photometric calibration: WFIRST IFU spectroscopic training sets.
 - Euclid and WFIRST grisms only for limited ranges of z

- Shear calibration and systematic mitigation:
 - Expect surveys to have different individual shapes (different effective resolutions, wavelength and shear estimation methods).
 - Compare reconstructed shear maps from each survey. WFIRST will not suffer from wide-band chromatic PSF issues Euclid may face.
- Deblending: For the main survey, Euclid will cover broader range of sky and help galaxy and galaxy-star. WFIRST will be helpful for LSST Deep Drilling Fields.