
Publicly Available Tools and the Overall Process  
for Generating Observing Scenario (OS) 11

Polarization Datasets for the Wide-field-of-view
Shaped Pupil Coronagraph

Jessica Gersh-Range 
Princeton University 

May 2022

Publicly Available Tools

￼2

• PROPER (John Krist)

- An optical propagation library available at http://proper-library.sourceforge.net  

• Roman Phase C PROPER Prescription (John Krist)

- PROPER model for the final CGI layout and coronagraph masks

- Available at https://sourceforge.net/projects/cgisim/files/  

• CGISim (John Krist)

- Wrapper code for the Roman Phase C PROPER Prescription that defines many of the necessary

parameters and generates an image

- Most of the setup happens in cgisim.rcgisim.py, which is called by a wrapper function that contains the

list of parameters

- Includes examples

- Available at https://sourceforge.net/projects/cgisim/files/  

• EMCCD Detect (Bijan Nemati and Sam Miller)

- Detector model that can be used for adding detector noise

- Available at https://sourceforge.net/projects/cgisim/files/

Implementing a Time Series Simulation

￼3

• A time series simulation is implemented by a wrapper function that defines all of the parameters; iteratively
calls, for each time step, a modified version of cgisim.rcgisim.py that returns an array of star-centered
electric fields; applies jitter using an approximation developed by John Krist; and constructs the normalized
intensity. (This process is not optimized for speed.) 

• When defining the parameters, this wrapper function: 

- Specifies which coronagraph mode, coronagraph type, and bandpass to use 
(cgi_mode = ‘excam’, cor_type = ‘spc-wide’, bandpass = ‘4’) 

- Specifies which polarization states are used 
(polaxis = 10 generates an incoherent image for each of the four polarization components) 

- Specifies the spectral type (star_spectrum) and V magnitude (star_vmag) of the star for each time step.  
The “star” column of the OS 11 inputs file, spc_wfov_os11_inputs.fits (available via https://
roman.ipac.caltech.edu/sims/Coronagraph_public_images.html), identifies reference star observations
with 2 and target star observations with 1. 

- Specifies the deformable mirror (DM) pistons, dm1 and dm2,  
(‘use_dm1’:1, ‘dm1_m’:dm1, ‘use_dm2’:1, ‘dm2_m’:dm2), 
with DM drift implemented as  
 ￼ . 
 
There are four DM solutions provided in the “examples” folder of Roman Phase C PROPER that can be
used to generate the initial dark hole, and the DM temperatures are provided in
spc_wfov_os11_inputs.fits. 
 
The parameters are detailed in the documentation for the Roman Phase C PROPER Prescription and in the documentation for CGISim: 
John Krist, “Roman Phase C PROPER Prescription for IDL, Python, and Matlab,” Public version 1.2.8, California Institute of Technology (2021). 
John Krist, “CGISim (Roman coronagraph) Simulator,” version 3.0.1, Jet Propulsion Laboratory, California Institute of Technology (2021).

DMnew x , y⎡⎣ ⎤⎦ = DMold x , y⎡⎣ ⎤⎦ 1+0.026Δtemp ,K()

Implementing a Time Series Simulation
• The wrapper function also incorporates multiple errors by setting parameters in CGISim: 

- Optic fabrication and alignment errors  
(‘use_errors’ : 1)  

- Wavefront error changes from thermal drift 
(‘zindex’:np.arange(4,46), ‘zval_m’ set to the values in columns 4-45 of the appropriate row of
spc_wfov_os11_inputs.fits, with the column numbers starting at 0) 

- Pupil shear  
(‘cgi_x_shift_m’ and ‘cgi_y_shift_m’ set to the values in columns 66 and 67, respectively, with the
column numbers starting at 0) 

- DM shear 
(‘DM1_x_shear’, ‘DM1_y_shear’, ‘DM2_x_shear’, and ‘DM2_y_shear’ set to the values in columns
68-71) 

- SPAM (shaped pupil mask) shear 
(‘SPAM_x_shear’ and ‘SPAM_y_shear’ set to the values in columns 74 and 75, respectively) 

- LSAM (Lyot stop) shear 
(‘LS_x_shear’ and ‘LS_y_shear’ set to the values in columns 76 and 77, respectively) 

• The focus correction mechanism offset to compensate Z4 is incorporated by setting ‘foc_mech_corr’ equal
to the value in column 80. 

• Adding jitter is a more involved process than simply setting a parameter. The jitter distribution is
represented by a set of source offsets, and the intensity for each offset is approximated and weighted. The
weighted intensities are then combined to form the final intensity. 
 
Jitter approximation reference: John Krist, private communication, (2022).

￼4

Setup (Only done once): 

• Determine a set of source offsets (x,y) to  
represent the jitter distribution, and calculate  
the area of the region, A(x,y), represented by  
each offset. 
This set contains 125 offsets,  
with offsets <= 0.6 mas spaced by 0.15 mas 
and with larger offsets spaced by  
up to 1.6 mas. 
 
 

• Calculate the star-centered electric field for the first time step for each
wavelength and each polarization p. 

• Create a library of the differences between an offset electric field for the first time
step and the star-centered electric field for the first time step: 
 
 

• It is also possible to precompute all of the weights for the offset electric fields at each
time step. 
 
Jitter approximation reference: John Krist, private communication, (2022).

Procedure for Adding Jitter

E0 0,0,λ ,p()
λ

ΔE0 x , y ,λ ,p()= E0 x , y ,λ ,p()−E0 0,0,λ ,p()

￼5

Source offsets and the areas they represent

Procedure for Adding Jitter
Calculating the jittered intensity: 

 For each time step i,

1. Calculate the jitter-free star-centered electric field, . 

2. For each offset (x,y), calculate a broadband intensity 
by calculating 
  
 
 
weighting each intensity in the array by the counts for the
appropriate wavelength, and combining the images with the
same polarization component but different wavelengths.
Then, multiply the broadband intensity by the predetermined
weight for the appropriate offset. 

3. Calculate by summing the weighted broadband images
with the same polarization component but different offsets.

Ii x , y ,p()

Ii x , y ,λ ,p()= Ei 0,0,λ ,p()+ΔE0 x , y ,λ ,p() 2 ,

Ei 0,0,λ ,p()

Ii p()

￼6
Jitter approximation reference: John Krist, private communication, (2022).

This jitter calculation process is an approximation that reduces the calculation time to a
reasonable amount.

Assembling the Final Datasets
In CGISim, polaxis is the parameter that specifies which polarization components to calculate: 

• polaxis = 10: “All-polarization” mode  
CGISim calculates the electric fields for all four polarization components  
(-45 deg in, Y out; -45 deg in, X out; 45 deg in, X out; and 45 deg in, Y out).  

• polaxis = 5: “x-polarized” mode 
CGISim calculates the electric fields for the two relevant polarization components 
(-45 deg in, X out and 45 deg in, X out). 

• polaxis = 6: “y-polarized” mode 
CGISim calculates the electric fields for the two relevant polarization components 
(-45 deg in, Y out and 45 deg in, Y out).  

The CGISim code is written to provide the final intensity, but it can be modified to provide the electric fields for
each polarization component at each wavelength along with the counts for each wavelength.

The transmission in the polarized modes (polaxis = 5 or 6) is 45% of the transmission in the all-polarization
mode.  

This means, for example, that the intensity of the -45 deg in, Y out polarization component for a y-polarized
simulation, ￼ , is thus 0.45 of the intensity of the -45 deg in, Y out polarization component for the all-

polarization simulation, ￼ : ￼ .

Iypol−45in,Yout

Iallpol−45in,Yout
Iypol−45in,Yout

= 0.45Iallpol−45in,Yout

Reference: John Krist, “CGISim (Roman coronagraph) Simulator,” version 3.0.1, Jet Propulsion Laboratory, California Institute of Technology (2021).

￼7

Assembling the Final Datasets

The final datasets are all based off of a time series simulation with polaxis = 10. 
 
For each time step, a modified version of CGISim is used to determine the star-centered electric field for each
polarization component at each wavelength. These electric fields are used to calculate the jittered intensity for
each of the four polarization components.  

These intensities are labeled as the “unpolarized” intensities for the polarization components, and they are
multiplied by 0.45 to obtain the “polarized” versions. 
 
The final intensity for the unpolarized case, ￼ , is calculated by averaging the four intensity components.
The calculations are repeated for a version of the coronagraph without the focal plane mask (FPM), and the
normalized intensity is calculated by dividing ￼ by the maximum value of the final intensity for the
“noFPM” case, ￼ :  

 ￼ . 

The final intensities for the polarized cases are calculated similarly, except that only the two relevant intensity
components are averaged instead of all four.

Iunpol

Iunpol
Iunpol,noFPM

NI =
Iunpol

max(Iunpol,noFPM)

￼8

