
Roman Coronagraph Instrument Performance and Status

Dmitry Savransky on behalf of Vanessa Bailey

Roman Coronagraph is a stepping stone toward Habitable Worlds Observatory

- A visible-light, high-contrast "technology demonstration" instrument for HWO
 - first space-based coronagraph with active wavefront control
 - requirement: 10-⁷ flux ratio 5σ detection limit in a single photometric band
 - Designed to outperform requirement
 - Predicted performance ≥4x beyond req
 - Based on end-to-end performance testing
- **Delivered** to GSFC May 2024

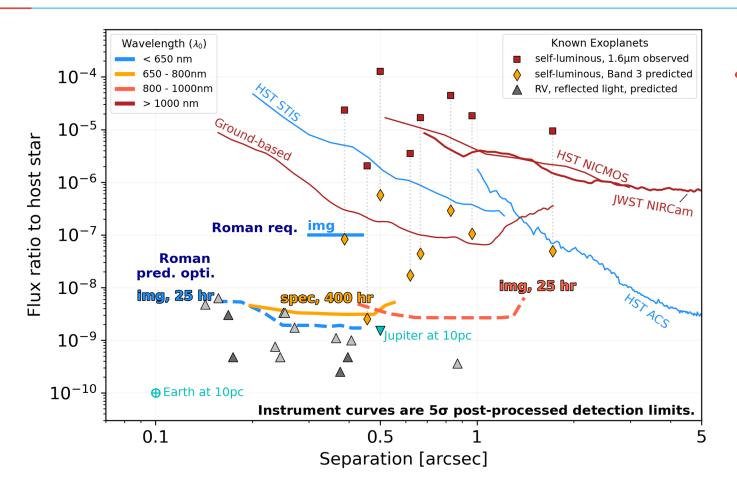
1 fully supported mode + "best effort" & "unsupported"

λ_{center}	Mode	Coronagraph Type	Approx. FOV radius	FOV Coverage	Support
575 nm	Narrow FOV Imaging	HLC	0.15" – 0.45"	360°	Required (full support)
730 nm, 660 nm	Slit + R~50 Prism Spectroscopy	SPC SPEC	0.2" – 0.55"	slit	Best Effort
575 nm, 825 nm	"Wide" FOV Imaging (SPC	SPC WFOV	0.3" - 1.4"	360°	Best Effort
575 nm, 825 nm	Imaging Polarimetry	HLC + SPC WFOV	0.15" - 1.4"	360°	Best Effort
any	Other coronagraph mask combinations	HLC, SPCs	0.15" - 1.4"	various	Unsupported
any	Other technology demonstrations: binary star, transmissive Zernike wavefront sensor, alternative wavefront sensing algorithms	various	various	various	Unsupported

Best effort: partially tested in TVAC; no guaranteed support on-orbit. **Unsupported** not tested in TVAC; no guaranteed support on-orbit

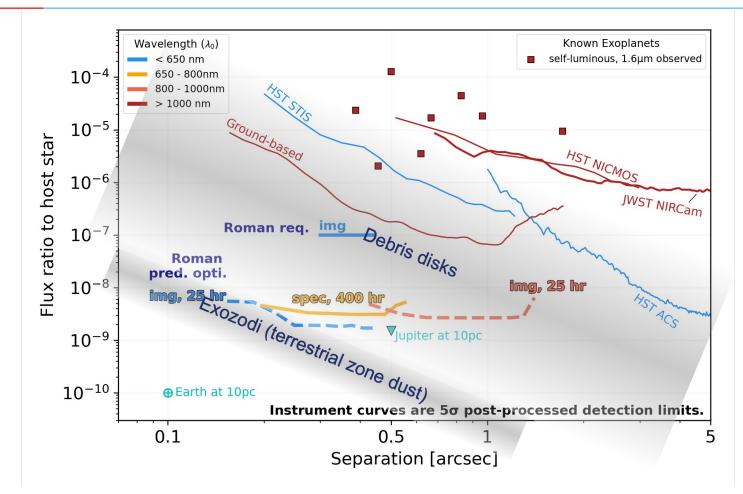
Contributed by ExEP: 575nm "Wide" FOV mask & all "unsupported" masks

3



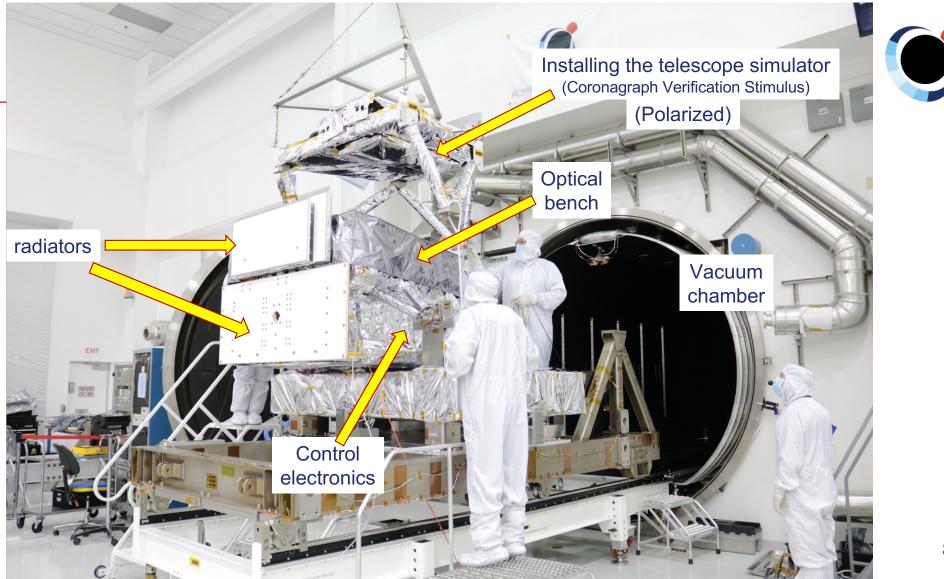
Observation Phase Guiding Principles

- Baseline: 2200hr (90 days) during first 18mo of Mission
 Mission starts 2027
- Top priority: achieve "Level 1 Technology Requirement"
 - 10⁻⁷ detection limit on a V~5 star in narrow FOV
 - L1 would constitute a successful technology demonstration for HWO
- Then, as time/resources allow, push performance limits
 - Baseline resources are not sufficient to support all "best-effort" and "unsupported" mode tests
 - Guiding principle for decision-making: Maximize long-term value to science community & Habitable Worlds Observatory
- Use scientifically-interesting targets whenever possible


Performance Predictions

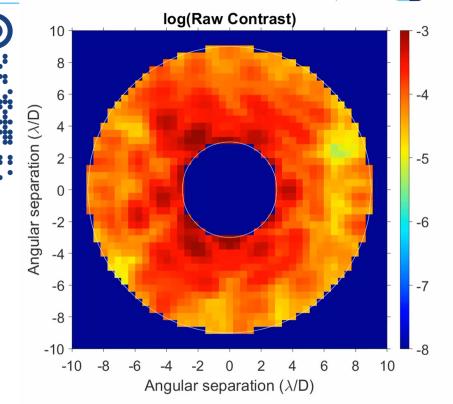
 These will evolve slightly with more modeling and incorporation of TVAC data

Performance Predictions



 These will evolve slightly with more modeling and incorporation of TVAC data

February - April 2024: Thermal Vacuum (TVAC) Performance testing "run for the record"



Primary coronagraph mode ("HLC") and a "best effort" coronagraph mode ("SPC WFOV") were tested

- Detection limit beats requirement (1E-7) by at least 4x
- Test was time-limited
 - Performance limit TBD on sky
- Info session slides & recordings: <u>https://workshop.ipac.caltech.edu/romancgi24/</u>
- Publication of test results and lessons learned in forthcoming *JATIS* special issue
- Wavefront sensing & control team: Eric Cady (lead), Byoung-Joon Seo, A. J. Riggs, Brian Kern, David Marx, Fang Shi, Hanying Zhou, John Krist, Garreth Ruane

Science & Technology Potential vs Capabilities

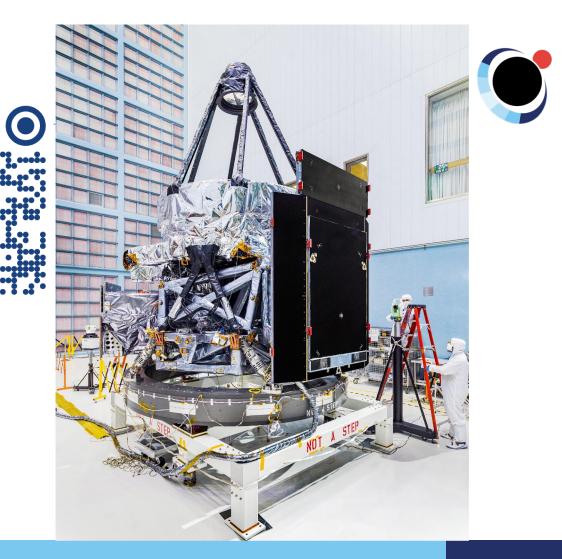
	10 ⁻⁷ , 6-9 λ/D, Band 1 (TTR5)	10 ⁻⁸ , 3-9 λ/D, Band 1 (conservative)	+ 'best effort' modes, 10 ⁻⁸ (conservative)	all modes, 3x 10 ⁻⁹ (optimistic)
Technology maturation	All key imaging technologies at TRL9	+ all key imaging technologies are <i>necessary</i> to achieve performance	+ spectroscopy and polarimetry technologies at TRL9	+ tech demos & performance is approaching HWO needs in multiple areas
Jupiter analog spectra	No	No	No	A few*
Jupiter analog Images	No	Unlikely	Unlikely	A handful*
Young giant planet spectra	No	No	Yes	Yes*
Young giant planet images	No	No	Yes	Yes*
Circumstellar disk images	Yes	Yes	+ polarimetry & (potentially**) H-alpha	+ lower-mass disks
Exo-Zodi Disks images	~5000 zodis	~100 zodis	~100 zodis	~40 zodis ***

* Roman will likely be target-limited.

** H-alpha imaging of transition (planet-forming) disks will depend on Coronagraph's faint star performance, which is TBD

*** Potential for survey of prime HWO targets if Coronagraph operations are extended

Tested in	10 ⁻⁷ , β-9 λ/Γ Bar I 1 (1 5)	10 ⁻⁸ , 3-9 λ/D, Band 1 (conservative)	+ 'best effort' modes, 10 ⁻⁸ (conservative)	all modes, 3x 10 ⁻⁹ (optimistic)
TVAC? Technology maturation	All key imaging technologies at TRL9	+ all key imaging technologies are <i>necessary</i> to achieve performance	+ spectroscopy and polarimetry technologies at TRL9	+ tech demos & performance is approaching HWO needs in multiple areas
Jupiter analog spectra	No	No	No	A few*
Jupiter analog Images	No	Unlikely	Unlikely	A handful*
Young giant planet spectra	No	No	Yes	Yes*
Young giant planet images	No	No	Yes	Yes*
Circumstellar disk images	Yes	Yes	+ polarimetry & (potentially**) H-alpha	+ lower-mass disks
Exo-Zodi Disks images	~5000 zodis	~100 zodis	~100 zodis	~40 zodis ***


* Roman will likely be target-limited.

** H-alpha imaging of transition (planet-forming) disks will depend on Coronagraph's faint star performance, which is TBD

*** Potential for survey of prime HWO targets if Coronagraph operations are extended

Summary

- Coronagraph matured multiple key technologies to lay foundation for HWO
- Delivered to GSFC in May, integrated in December
- Testing demonstrated performance at least 4x beyond requirement
 - + dark hole in one additional
 "best effort" mode
- Outlook improving for *some* use of one or more "best effort" modes on sky
- On track for science operations in 2027

https://roman.gsfc.nasa.gov/science/roses.html