Roman CPP Data Reduction & Simulations Working Group

AAS Jan. 14 Presented by: Maxwell Millar-Blanchaer

What does the DR&S Working Group Do?

- Delivering of the official DRP
- Expanding the existing simulation tools
- Intimate interactions with the Coronagraph Technology Center, the Science Support Center and the PS

Jason Wang Northwestern

Max Millar-Blanchaer UC Santa Barbara

DRP Product Delivery Lead

Marie Ygouf

Who is the DR&S Working Group?

Alexandra Greenbaum Tvler Robinson Karl Stapelfeldt John Krist Vanessa Bailey Rob Zellem Neil Zimmerman Taichi Uyama Hanying Zhou Sergi Hildebrandt Sarah Blunt Markus Feldt Bruce Macintosh Ell Bogat Jessica Gersh-Range Bertrand Mennesson Yui Kawashima Hajime Kawahara

Satoshi Itoh Aoi Takahashi Frans Snik David Doelman Óscar Carrión-González Axel Potier **Elodie Choquet** Jason Wang Ramya M Anche tyler groff lun Nishikawa Shota Miyazaki Johan Mazover Hibiki Yama Wolfgang Brandner Matthias Samland Juergen Schreiber Motohide Tamura

John Debes Remi soummer Naoshi Murakami Mark Marley N. Jeremy Kasdin Kenta Yoneta Lisa Altinier Robert De Rosa Oliver Krause Arthur Vigan Sarah Moran Max Millar-Blanchaer Marie Ygouf Tsutsumi Nagai Benjamin Charnay Jorge Llop-Sayson Julien Girard Gael Chauvin

John Livingston Schuyler Wolff Remi Soummer Malachi Noel Justin Hom Dan Sirbu Samantha Hasler Kevin Ludwick Cynthia Wong Zhexing Li Emmanuel Ioliet Amanda Chavez **Beth Biller** Ramva Anche Alexis Lau Toshiyuki Mizuki Michele Woodland Marah Brinjikji

Zarah L Brown Masayuki Kuzuhara Pengyu Liu Catherine Clark Julia Milton Koji Kawabata Bijan Nemati Guillermo Gonzalez Alexis Bidot Eduardo Bendek Macarena Constanza Vega Pallauta Ben Sutlieff Jingwen Zhang

DRP Development Team

Ell Bogat U of Maryland, NASA GSFC

Julia Milton

JPL

Sergi Hildebrandt

Lisa Altinier LAM

Amanda Chavez Northwestern

Ramya Anche University of Arizona

Matthias Samland MPIA

Taichi Uyama Cal State Northridge

Kevin Ludwick University of Alabama

Juergen Schreiber MPIA

4

What is CorgiDRP?

- The official data reduction pipeline for data from the Coronagraph Instrument
- Development Philosophies:
 - Open Source (from the start!)
 - User Friendly
 - Easy to develop for astronomers
 - Flexible/Modular (easy to run one step at a time)
 - Transparent data manipulation (the data is easily accessible at each step)
 - Pip installable

Who is the DRP for?

CTC Ground Software

The DRP needs to produce data for wavefront sensing:

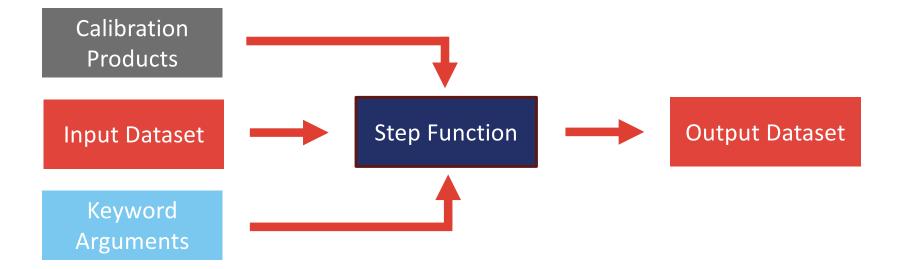
The GITL loop uses Level 2 Data Products from the DRP Science Support Center

The DRP needs to produce data for archiving

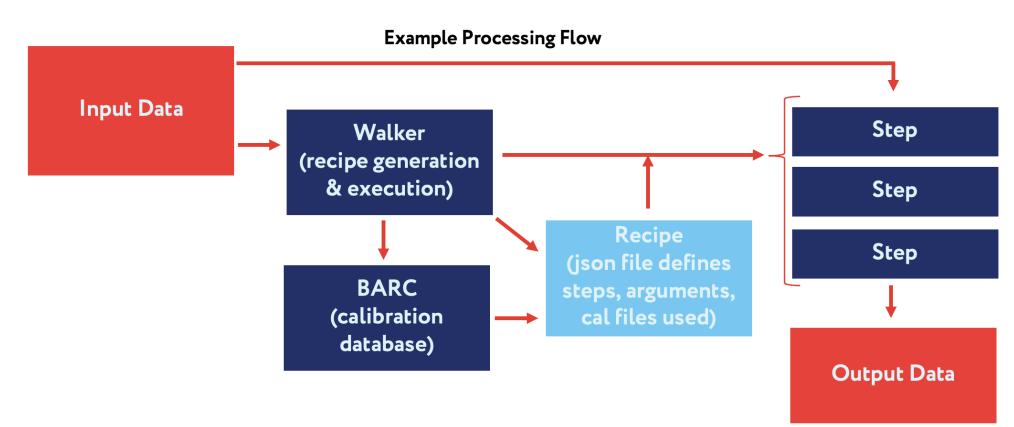
- Level 1 Data Products will be archived immediately
- Level 2 Data Products will be processed by the DRP for public archiving

The DRP needs to produce data for independent processing:

 Users will be able to process their own data in their own way

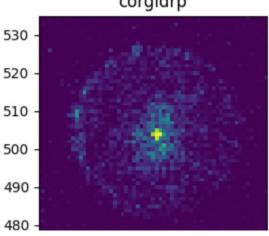

What does the DRP do?

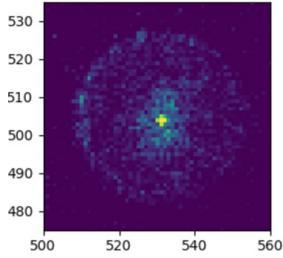
L1 -> L2a	L2a -> L2b	L2b -> L3	L3 -> L4	L4 -> TDA
 Separate image from prescan/overscan Subtract bias Mask cosmic rays Correct non- linearity 	 Convert DN to electrons Divide EM gain Apply dark & flat field Apply master bad pixel (BP) map Desmear and CTI Correction 	 Normalize by exposure time Construct World Coordinate System transformation & distortion correction 	Correct distortion/BP Measure target star position PSF subtraction Combine images in observation sequence	 Calculate target star apparent mag. Flux ratio noise vs. separation Companion apparent mag, flux ratio, SNR



DRP Architecture

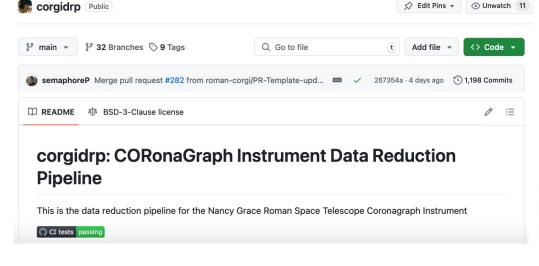
- Basic Principle: Dataset In -> Dataset Out
- Datasets are essentially lists of Astropy HDUs


DRP Architecture


*Heritage from the GPI DRP and KPIC DRP

DRP Year 1 In Review

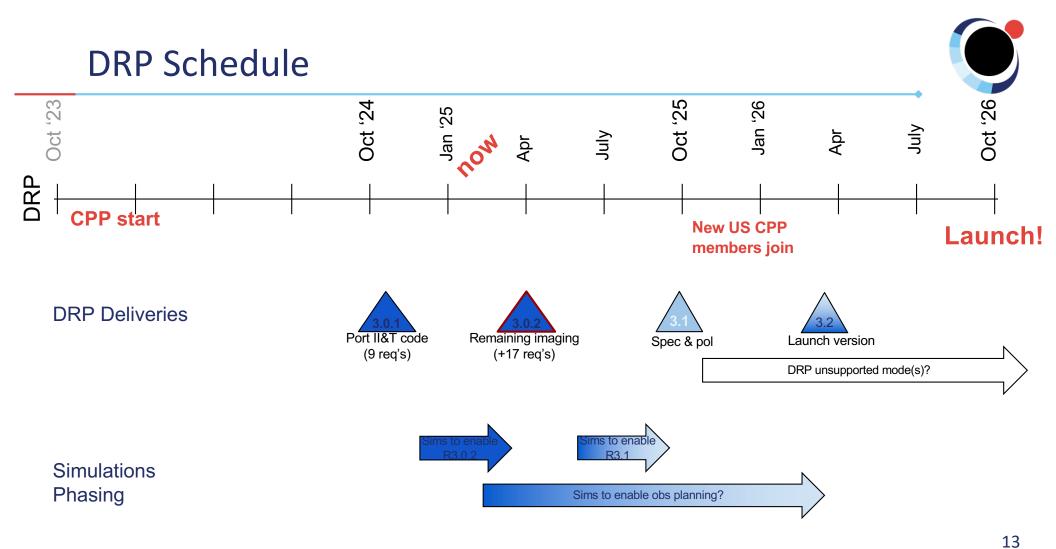
- Kick-off at Face to Face meeting in Feb 2024
- Established Main DRP Architecture
- Ported Engineering Code to new Architecture
- Started to define Data Format, Header Keywords
 - Working with many other part of the team
- Successfully delivered Version 1 of the pipeline (R3.0.1)
 - Passed All Acceptance Tests as of Dec. 22, 2024



corgidrp

DRP Current Status

- Total Commits: 1198
- Total Lines of code: 24,294
 - (Includes heritage from the Engineering code)
- Total number of Contributors: 13



Expanding Simulator Suite

- Goals:
 - Produce L1 data products
 - Simulate **Everything** to help with observation planning and DRP validation:
 - Include optical simulations from cgisim
 - Include detector simulations from emccd_detect
 - Easy to use for new users
 - Powerful for super-users
- Status:
 - Architecture Established
 - Code Under Development

Coming In the Next Year

- DRP Release R3.0.2 Complete Main Functionality
- DRP Release R3.1 Spectroscopy and Polarimetry Modes
- Complete Simulator Architecture and Start Simulation Suite
- Want to get involved? Best way is to apply to th Coronagraph Community Participation Program
 - NOIs Due Jan 17!

