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Public CGl Modeling Software

* PROPER
e optical propagation library upon which the model is based
 available for IDL, Matlab, & Python

* roman_phasec_proper
* CGIl Phase C PROPER-based diffraction model
* Includes telescope & CGlI
 available for IDL, Matlab, & Python

* CGISIm

* Python wrapper around roman_phasec_proper Python model
e produces intensity images, optionally with EMCCD noise



No WFC Included

None of these packages does wavefront control.

DM patterns for the baseline modes (HLC Band 1, SPC
Spec Band 3, SPC WFOV Band 4) are provided in the
examples subdirectory of the roman_phasec_proper
package for 3 different contrast levels.

Otherwise, the user must do their own WFC, including
creating code to compute the Jacobian. Consider
FALCO at https://github.com/ajeldorado



PROPER

* Knowledge of PROPER is not necessary to run the
CGIl model, except for how to call a PROPER-based
prescription (prop_run & prop_run_multi)

* calls are demonstrated in the model’s manual and
example pPrograms

* PROPER does the propagating, DM modeling,
adding aberrations

* Allows parallel runs (e.g., multiple wavelengths)
* Available from proper-library.sourceforge.net



roman_phasec_proper

Same model is used to generate time series

* measured primary & secondary mirror errors are used in JPL-only version (ITAR & L3Harris proprietary), while
synthetic errors used in public version

Contains representations of each optic and coronagraphic mask
* Each optic has either measured or synthetic surface errors
* As-designed masks used (no mask errors, defaults to perfectly aligned masks)

Pupil defocus included

Predicted polarization-induced aberrations included
* must run model separately for each of 4 polarization terms, resulting images added incoherently

Options to displace some optics & masks
User provides DM actuator settings
Can offset source

Produces E-field at detector plane for given wavelength
* HLC FPMs defined at specific wavelengths

User must introduce jitter by computing multiple source offsets

A ”cdorlnpact” model is provided, but only as a guide for creating a Jacobian-generating
mode

Documentation and multiple examples provided
* DM settings provided for various contrast levels for baseline CGl modes

Available from cgisim.sourceforge.io






Polarization aberrations
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Output of run_flatten.pro

Before flattening, no HLC pattern After, no After, with pattern

Output of run_hlc.pro

Before EFC After EFC After EFC
mean polarization full polarization




CGISIm

Wrapper around PROPER model

User specifies coronagraphic mode, bandpass, DM patterns, stellar
brightness & spectrum (limited catalog), exposure parameters

Optional parameters can be passed to CGl model
Can produce LOWFS & phase retrieval images

Produces broadband intensity image at detector-sized pixels, or
datacube of images vs wavelength for SPC Spec

Optionally add EMCCD noise using Nemati & Miller EMCCD_DETECT
package

* does not do the post-processing (photon counting)

e 1storder solution given in back of manual

* Nemati describes 3" order solution in Proc. SPIE, 11443 (2020)
Primarily has been used for testing wavefront control (phase retrieval)
algorithms

* Does not have ability to accept astronomical scenes or add jitter

Available from cgisim.sourceforge.io



Output of testsim_lowfs.py
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Output of testsim_defocus.py
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Output of testsim_spc_excam.py
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Output of testsim_hlc.py
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Output of testsim_spc_wide_iterations.py
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import numpy as np

import proper

import roman phasec proper
import cgisim

cgi mode = 'excam'

cor_type = 'hlc'

bandpass = '1'

polaxis = -10 # compute images for mean X+Y polarization

dml = proper.prop fits read( roman phasec proper.lib dir+'/examples/hlc best contrast dml.fits' )
dm2 = proper.prop fits read( roman phasec proper.lib dir+'/examples/hlc best contrast dm2.fits' )

# source offset by 6 lam/D
params = {'use dml':1, 'dml m':dml, 'use dm2':1, 'dm2 m':dm2, 'use field stop':0, 'source x offset':6.0}

psf6, counts6 = cgisim.rcgisim( cgi mode, cor type, bandpass, polaxis, params,
star spectrum='alOv', star vmag=2.0, output file='psf6.fits' )

# source offset by 30 lam/D
params = {'use dml':1, 'dml m':dml, 'use dm2':1, 'dm2 m':dm2, 'use field stop':0, 'source x offset’:30.0}

psf40, counts40 = cgisim.rcgisim( cgi mode, cor type, bandpass, polaxis, params,
star spectrum='aOv', star vmag=2.0, output file= 'psf30.fits' )
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CGISIm Runtimes

* CGISim will run the model using up to 15 threads in
parallel (change code to adjust max threads)

* Timings on dual Xeon Gold 6240 workstation (36
real cores)
e HLC Band 1

* mean polarization (coherent only, 7 fields) = 0.4 min
* all polarizations (incoherent, 28 fields) = 1.2 min

* SPC WFOV Band 4

* mean polarization (7 fields) = 1.1 min
« all polarizations (28 fields) = 2.6 min



