NN Jet Propulsion Laboratory
2Bl California Institute of Technology

Roman CG|
Diffraction Model

John Krist
Jet Propulsion Laboratory

California Inst. of Technology
27 July 2021

Public CGl Modeling Software

* PROPER
e optical propagation library upon which the model is based
 available for IDL, Matlab, & Python

* roman_phasec_proper
* CGIl Phase C PROPER-based diffraction model
* Includes telescope & CGlI
 available for IDL, Matlab, & Python

* CGISIm

* Python wrapper around roman_phasec_proper Python model
e produces intensity images, optionally with EMCCD noise

No WFC Included

None of these packages does wavefront control.

DM patterns for the baseline modes (HLC Band 1, SPC
Spec Band 3, SPC WFOV Band 4) are provided in the
examples subdirectory of the roman_phasec_proper
package for 3 different contrast levels.

Otherwise, the user must do their own WFC, including
creating code to compute the Jacobian. Consider
FALCO at https://github.com/ajeldorado

PROPER

* Knowledge of PROPER is not necessary to run the
CGIl model, except for how to call a PROPER-based
prescription (prop_run & prop_run_multi)

* calls are demonstrated in the model’s manual and
example pPrograms

* PROPER does the propagating, DM modeling,
adding aberrations

* Allows parallel runs (e.g., multiple wavelengths)
* Available from proper-library.sourceforge.net

roman_phasec_proper

Same model is used to generate time series

* measured primary & secondary mirror errors are used in JPL-only version (ITAR & L3Harris proprietary), while
synthetic errors used in public version

Contains representations of each optic and coronagraphic mask
* Each optic has either measured or synthetic surface errors
* As-designed masks used (no mask errors, defaults to perfectly aligned masks)

Pupil defocus included

Predicted polarization-induced aberrations included
* must run model separately for each of 4 polarization terms, resulting images added incoherently

Options to displace some optics & masks
User provides DM actuator settings
Can offset source

Produces E-field at detector plane for given wavelength
* HLC FPMs defined at specific wavelengths

User must introduce jitter by computing multiple source offsets

A ”cdorlnpact” model is provided, but only as a guide for creating a Jacobian-generating
mode

Documentation and multiple examples provided
* DM settings provided for various contrast levels for baseline CGl modes

Available from cgisim.sourceforge.io

Polarization aberrations

Without pol ab abs(diff)

All polarizations All - mean

[} i
F Ly .
. pa { e .
s v -V § > N g 10
"‘ e oG eV 5\ ~ . N SR At :
TURE b o 2 b s s _ AP
(c) ‘-'.‘, \"',a.'_‘- el AV ‘.""" ®)ed ...: ’
A o d) ’ Ay Vo T o e
JEE S &3 b
0° 90° 10°-90°]
1000 10° 108 107
Mean WF | amp — no amp| NI
9 10-3

10-10 10°
NI 7

Output of run_flatten.pro

Before flattening, no HLC pattern After, no After, with pattern

Output of run_hlc.pro

Before EFC After EFC After EFC
mean polarization full polarization

CGISIm

Wrapper around PROPER model

User specifies coronagraphic mode, bandpass, DM patterns, stellar
brightness & spectrum (limited catalog), exposure parameters

Optional parameters can be passed to CGl model
Can produce LOWFS & phase retrieval images

Produces broadband intensity image at detector-sized pixels, or
datacube of images vs wavelength for SPC Spec

Optionally add EMCCD noise using Nemati & Miller EMCCD_DETECT
package

* does not do the post-processing (photon counting)

e 1storder solution given in back of manual

* Nemati describes 3" order solution in Proc. SPIE, 11443 (2020)
Primarily has been used for testing wavefront control (phase retrieval)
algorithms

* Does not have ability to accept astronomical scenes or add jitter

Available from cgisim.sourceforge.io

Output of testsim_lowfs.py

SPC Wide Reference

20 40

HLC Reference

0 20 40
SPC SPEC Reference

L

400000
20

2000005,

SPC Wide 74 - Reference
o
Lens 1 before flattening
10 o
500
20 b 100
]
30 _s00 200
40 300
50
o 20 “ 0 100 200 300
HLC Z4 - Reference Lens 1 after flattening
0
10 400
200
o
100 200 300
0 20 40 Lens 1 with pinhole
SPC SPEC 24 - Reference o
o
2000
]
-2000
0 100 200 300

Output of testsim_defocus.py

oLens 2 before flattening

100

200

300
0 100 200 300
Lens 2 after flattening
o

100

200

100 200 300

Lens 2 with pinhole
o

0 100 200 300

OLens 3 before flattening

100

200

300
0 100 200 300
Lens 3 after flattening
0

100

200

300

0 100 200 300
Lens 3 with pinhole
o

@

0 100 200 300

uLer\s 4 before flattening

0 100 200 300
Lens 4 after flattening
(4]

100
200
300

0 100 200 300
Lens 4 with pinhole
0

0 100 200 300

Output of testsim_spc_excam.py

AOV Unocculted Intensity

AOV Norm Intensity

20

1077
108 40
107 60

80

20 40 60

K5V Intensity K5V CCD Intensity

20

60

60

80 80

K5V Intensity

Output of testsim_hlc.py

AOV Norm Intensity All Pol 0
0
1077 10-7 20
20
1078 4 1078 40
10-¢ 60 10-? 60
80
10-10 10-10g¢

K5V CCD Intensity

80 0 20 40 60 80

A0V Unocculted Intensity

20 40 60 80

Output of testsim_spc_wide_iterations.py

Flattened

Intermediate iteration

Early iteration

140

Final iteration

140

import numpy as np

import proper

import roman phasec proper
import cgisim

cgi mode = 'excam'

cor_type = 'hlc'

bandpass = '1'

polaxis = -10 # compute images for mean X+Y polarization

dml = proper.prop fits read(roman phasec proper.lib dir+'/examples/hlc best contrast dml.fits')
dm2 = proper.prop fits read(roman phasec proper.lib dir+'/examples/hlc best contrast dm2.fits')

source offset by 6 lam/D
params = {'use dml':1, 'dml m':dml, 'use dm2':1, 'dm2 m':dm2, 'use field stop':0, 'source x offset':6.0}

psf6, counts6 = cgisim.rcgisim(cgi mode, cor type, bandpass, polaxis, params,
star spectrum='alOv', star vmag=2.0, output file='psf6.fits')

source offset by 30 lam/D
params = {'use dml':1, 'dml m':dml, 'use dm2':1, 'dm2 m':dm2, 'use field stop':0, 'source x offset’:30.0}

psf40, counts40 = cgisim.rcgisim(cgi mode, cor type, bandpass, polaxis, params,
star spectrum='aOv', star vmag=2.0, output file= 'psf30.fits')

11

CGISIm Runtimes

* CGISim will run the model using up to 15 threads in
parallel (change code to adjust max threads)

* Timings on dual Xeon Gold 6240 workstation (36
real cores)
e HLC Band 1

* mean polarization (coherent only, 7 fields) = 0.4 min
* all polarizations (incoherent, 28 fields) = 1.2 min

* SPC WFOV Band 4

* mean polarization (7 fields) = 1.1 min
« all polarizations (28 fields) = 2.6 min

