

Effects of CTI on Roman CGI under Photon-counting Frame Rates --Report

G. Gonzalez, D. Nemati, B. Nemati

July 5, 2022

CTI simulation parameters

- Want to answer question:
 - What effect does CTI have on Roman CGI EXCAM observations of 100 ppb exoplanet flux after 18 months in space at photon-counted frame rates? Charge traps simulated using **ArCTIc** software (v 7.0.4)* using well-fill exponent = 0.58.

• Simulation software setup:

- Simulation parameters:
 - Short exposures (2s) photon counting frame rate,
 - EM gain = 1.0,
 - 1.0, 1.5, 3.0, 5.0 yrs orbit time exposures.
- Scene generator makes a simple exoplanet fluxmap (line of charge):
 - 500 rows,
 - 0.06 ph/s/px line charge at row 490,
 - 0.009 ph/s/px background (bottom 65 rows).
- Simple detector model:
 - QE = 0.9; dark current (0.0028 e/s/px); CIC (0.02 e/s/px),

 - EM gain stage noise, ArCTIc call here
 - Bias offset (10,000 e),
 - e/DN = 1/20; no clipping to set bit dynamic range; read noise = 0.
- Five species of traps followed in parallel readout, with densities increasing over time from expected radiation damage accumulation to EXCAM (see next slide).
- Comparison frames generated by bypassing ArCTIc.
- Thresholding not applied. That makes these simulations effectively analog.

Trap Species Parameters

- Parameters based on trap pumping of several CCD201 EMCCDs exposed to various p fluences as reported in Bush *et al.* (2021, *JATIS* 7(1), 016003).
- CBE 10 MeV p fluence for Roman 5.25 yr lifetime is 1e9 p/cm².
- Release times calculated from values in Table 10 using Shockley-Read-Hall theory.
- Assumed 13μm³/pix charge packet volume (upper limit, N. Bush, priv. comm.).

Species	Release time constant	Release time constant	
	(s)	(pixels)	
VV	5.90×10^{-5}	5.69×10^{-1}	
Si-E	$5.39 \times 10^{+1}$	$5.20 \times 10^{+5}$	
Si-U	1.76×10^{-1}	$1.70 \times 10^{+3}$	
VV^{-}	$2.38 \times 10^{+1}$	$2.30 \times 10^{+5}$	
Si-A	2.07×10^{-7}	2.00×10^{-3}	

Table 12: Charge trap release time constants for each species.

Species	Energy level	Em. cross section	
	(eV)	(cm^2)	
VV	0.235 ± 0.005	$(2.6 \pm 0.5) \times 10^{-15}$	
Si-E	0.475 ± 0.015	$(3.7 \pm 0.8) \times 10^{-14}$	
Si-U	0.37 ± 0.01	$(8.7 \pm 0.7) \times 10^{-15}$	
VV^-	0.42 ± 0.01	$(2.0 \pm 1.0) \times 10^{-15}$	
Si-A	0.165	6.1×10^{-15}	

Table 10: Charge trap properties that are independent of radiation exposure.

Trap species	Trap density growth rate	Initial density	Density @ 21 months
	$(traps/\mu m^3/yr)$	$(traps/\mu m^3)$	$(traps/\mu m^3)$
VV	1.6×10^{-4}	5.1×10^{-4}	7.9×10^{-4}
Si-E	8.9×10^{-4}	1.4×10^{-3}	2.9×10^{-3}
Si-U	3.9×10^{-5}	8.7×10^{-5}	1.6×10^{-4}
VV^-	1.3×10^{-4}	4.2×10^{-4}	6.5×10^{-4}
Si-A	1.7×10^{-3}	2.6×10^{-3}	5.5×10^{-3}

Table 11: Charge trap density growth rates for each trap species.

CTI simulation checks

- Tests (all passed):
 - Linearity of CTI with number of rows (noiseless),
 - Linearity of CTI with orbit time (noiseless),
 - Shape of difference between CTI before and after (noiseless),
 - Saving FITS versus CSV files,
 - CPU parallel versus serial computation,
 - Adequate e/DN to sample low signal values.

40

60

row

20

-0.04

0

4

100

80

Simulated frames examples

Signal Loss – Nominal TTR5 Epoch: 1.5 yrs in orbit

- Signal is in one row, and traps smear it in the upstream direction.
- We estimate signal recovery effect (e.g. by fitting to smeared shape) simply by binning, since most of the loss is to the next row (ROE specific).

Signal Loss – 1.0 yr in orbit

• 24,576 frames @ 200 cols/fr = 4.9e6 columns

Signal Loss – 3.0 yrs in orbit

• 24,576 frames @ 200 cols/fr = 4.9e6 columns

Signal Loss – 5.0 yrs in orbit

• 24,576 frames @ 200 cols/fr = 4.9e6 columns

CTI effect on flux loss with orbit time

• Flux loss summary plots:

6.3% flux loss from fit at 1.5 yrs

2.0% flux loss from fit at 1.5 yrs

Summary

- CTI:
 - Results in Roman CGI exoplanet flux loss of 6.3% at 1.5 yrs in orbit.
 - effect on binned (2 px) data is 2.0% flux loss at 1.5 yrs in orbit.
 - Binning captures the smeared signal that is potentially recoverable.

• Conclusions and recommendations:

- Making no correction leads to a signal loss that exceeds the allocation (2.7%).
- But, fitting to the expected shape which includes the smeared signal, recovers most of the loss, bringing the CTI effect (2.0%) to within allocation at 1.5 yrs.

Changes from last year

- Why did results change from last year?
 - Increased sample size of simulations to improve statistics,
 - Used newer ArCTIc software (as opposed to ArCTIcpy), which includes at least one error correction by Richard Massey's team,
 - Included CIC this time,
 - Did not apply thresholding this time; it introduces a systematic error with high EM gain values. EM gain modeling likely needs to be improved to do photon counting right.