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Why Another Database?
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• Existing resources do a great job of tabulating known 
exoplanet data
• https://exoplanetarchive.ipac.caltech.edu/

• http://exoplanet.eu/catalog/

• However, they are not geared towards imaging missions, and 
lack key data needed for planning imaging observations

•We seek to augment existing catalogs, not replace them
• Also we wanted something we can more easily query

https://exoplanetarchive.ipac.caltech.edu/
http://exoplanet.eu/catalog/


Just Because You Know Something is There…
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…Doesn’t mean 
you’ll see it

Most of the currently 
known best CGI 
targets are RV 
detections, meaning 
that we lack:
• Inclination
• Photometry



What We Do
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Pick best 
orbital fits 

Calculate 
Additional 
Properties

+
We first determine the effectiveness of the classification

algorithms by using the k-fold8 cross validation9 method
(Kohavi 1995). In this method, for each algorithm we: (1)
randomly separated the original sample into k equal groups, (2)
keep one of the groups as the validation data for testing, while
the other remaining groups are used as the training data, and (3)

compute the mean predictive accuracy given the training and
validation set. These three steps are then repeated k times so
that each group is used at least once as the validation data. In
this analysis we also ensure that the same random seed is used
to split the data into identical groups each time an algorithm is
evaluated. We test our cross validation routine with values of k
k from k=10–100.
We briefly describe each of the algorithms as they relate to

the problem of directly imaged planets, with further technical

Figure 3. Representative albedo spectra showing the 10 different parent-star distances, the 6 different metallicities, and the 6 different bandpasses explored. The top
panel shows the cases for a single metallicity (1×solar) with all available distances from host star. The bottom panel show cases for a system with a parent-star
separation of 5 au, with all available metallicities. Main point: temperature dictates the main opacity source (Rayleigh and alkali dominate as temperature increases,
and CH4 and H2O dominate as temperature decreases). Metallicity dictates the total overall opacity of the atmosphere (atmosphere becomes darker for higher metal
content).

Figure 4. Representative albedo spectra showing the effect of varying cloud
profiles for a 1×solar composition planet located 5 au from a Sun-like star
(gravity=25 m s−2). Our cloud profiles are varied by increasing values of fsed,
the sedimentation efficiency. Main point: (1) large fsedʼs create vertically thin,
optically thin clouds and vice versa, (2) Clouds increase atmospheric brightness
toward 1 μm.

Figure 5. Representative albedo spectra showing the effect of phase when
clouds are also present. All models are for a 1×solar Jupiter-analogue located
5 au from a Sun-like star with a cloud profile with fsed=3. Main point: higher
phase (from full phase=0) observations decrease the overall brightness of the
directly imaged planet.

8 sklearn.model_selection.KFold()
9 sklearn.model_selection.cross_val_score()
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The Astronomical Journal, 156:158 (12pp), 2018 October Batalha et al.

Photometric Models

+ = Detection 
Probabilities



Photometric Model
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The Astronomical Journal, 156:158 (12pp), 2018 October Batalha et al.

• Batalha et al. (2018) Color Classification of Extrasolar Giant Planets: Prospects and Cautions, AJ 156 



Clouds Make a Huge Difference
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1 AU at 575 nm 5 AU at 825 nm



Current Capabilities: Orbits & Photometry
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47 UMa c 
Assuming 90o

Inclination



Current Capabilities: Probability of Detection

8• Savransky et al. (2019) Exploration of the Dynamical Phase Space of Stars with Known Planets , Proc. SPIE



Other Current Capabilities
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• Static Depth of Search Plots for top 120 Targets
• Complete documentation 

(https://plandb.sioslab.com/docs/html/index.html)
• Ability to generate your own version and run locally 

(https://plandb.sioslab.com/docs/html/index.html#building-your-own)

https://plandb.sioslab.com/docs/html/index.html
https://plandb.sioslab.com/docs/html/index.html


Coming Soon: Integration Times
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Coming Soon: Per-Star Detection Limits
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Coming Soonish: Time-Dependent Probabilities
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Summing Up
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• The Imaging Mission Database is intended to be a community 
resource.  It is fully open source (MIT License) and may be replicated 
by anyone and adapted for any instrument:
• https://github.com/sioslab/plandb.sioslab.com

• Or just use it: https://plandb.sioslab.com/
• If you do, please check out our use policy and requested acknowledgements: 

https://plandb.sioslab.com/about.php
• The database includes content from the NASA Exoplanet Archive, which is operated by 

the California Institute of Technology, under contract with the National Aeronautics 
and Space Administration under the Exoplanet Exploration Program, and from the 
SIMBAD database, operated at CDS, Strasbourg, France. 

https://github.com/sioslab/plandb.sioslab.com
https://plandb.sioslab.com/
https://plandb.sioslab.com/about.php

