Exploring Potential Targets for the Roman Coronagraph: Some Deeper Dives

Team Members: **Prabal Saxena**, Geronimo L. Villanueva, Neil Zimmerman, Avi Mandell, Margaret Turnbull, Julien Girard, Sergi Hildebrandt, Ell Bogat and Adam J. R. W. Smith Supported by Roman Turnbull SIT, Sellers Exoplanet Collaboration, CRESST II

Simulating Reflected Light Spectra with the Planetary Spectrum Generator

Flexible radiative transfer suite that allows the public to implement targeted observing scenarios – see Villanueva et al. (2018)

Simulating Reflected Light Spectra with the Planetary Spectrum Generator

Ups And d as a Direct Imaging Target

WFIRST-AFTA					
Planet name	Planet SMA (AU)	Planet mass (MJ)	Separation (arcsec)	Contrast (rel to star)	Integration time (days)
HD62509b	1.69	2.9	0.1558	2.08E-08	0.0007
HR8974b	2.05	1.85	0.1389	1.39E-08	0.0128
Ups And d	2.55	10.19	0.1805	8.74E-09	0.0298
47 Uma b	2.1	2.53	0.1427	1.34E-08	0.1093
Ups And e	5.25	1.059	0.3717	2.09E-09	0.1995
HD192310c	1.18	0.075	0.1265	2.35E-08	0.2092
47 Uma c	3.6	0.54	0.2446	4.32E-09	0.2353
HD176051b	1 76	1.5	0 113	1.88E-08	0 4871

Recognized as a potentially interesting high contrast target in the 2015 SDT report – but appeared to pose IWA concerns. However, based on system parameter fitting by McArthur et al. (2010) and Deitrick et al. (2015), Ups And d is likely at sufficient separation at least at apastron.

Models w/different metallicity suggest a significant range of T/P + cloud structure over orbit!

Ups And D ParametersObservation DerivedPlanetary Mass - $10.25^{+0.7}_{-3.3} M_{Jupiter}$ Planetary Radius - $1.02 R_{Jupiter}$ Semi-major Axis - 2.53 auOrbital Eccentricity - 0.316Orbital Inclination - 23.758° Model Parameters T_{eff} (max, min, mean) - 260, 188, 215 KPlanetary Gravity (g) - $244.23 m/s^2$ Metallicity ($[Fe/H]_{star} = 0.131$) = 1/3/5/10x

Config files + more info at Saxena et al 2021 AJ 162 30

Saxena *et al* 2021 *AJ* **162** 30

Simulating Reflected Light Spectra of the Promising Direct Imaging Target, ups And d, using the Planetary Spectrum Generator

Ups And d is a nearby gas giant in its system's habitable zone. Its orbital parameters have been constrained using RV + Astrometry, and its eccentric orbit may portend significant seasonal atmospheric variations

1

Using Roman simulator to examine ups And d orbit, planet is observable for most of orbit except near periastron

Simulated phase and illumination appropriate spectra using orbital constraints

Viability of Roman Observations of ups And d

Multiple observing windows in complementary time periods to other potential high priority targets

Using PSG and the Coronagraph Template

psg.gsfc.nasa.gov/

psg.gsfc.nasa.gov/

HR 8799e: Solar Metallicity vs super-Solar

- P-T profile and basic cloud profile from Mollière et al (2020). Using atmospheric retrieval on GPI, SPHERE and GRAVITY data

- Abundances using GGchem. Note Ruffio et al. (2021) find solar metallicity seem to fit for b, c + d, A0V star, working on template for star

HR 8799e: Exploring Phase Appropriate Spectra (Birthday Observations)

Assuming a 20 hr observation using Roman CGI SPC template we find:

- Phase driven differences from current to 2026 observations are minimal (may be different in 2030 though!)

- Solar vs [Fe/H] = 0.48 may be somewhat distinguishable using K line

- An enstatite haze (from Mollière et al (2020)) is likely distinguishable

More to come!