Nancy Grace Roman Space Telescope
Coronagraph Instrument
Observation Calibrations

Rob Zellem1 (he/him), Bijan Nemati1,2,
Vanessa Bailey3, Eric Cady1, Mark Colavita1, Ewan Douglas3, Guillermo Gonzalez1, Tyler Groff4,
Sergi Hildebrandt1, Bertrand Mennesson1, Erin Maier3, Marie Ygouf1, Neil Zimmerman4

With support from many at the Jet Propulsion Laboratory, Goddard Space Flight Center, and the Science Investigation Teams

1 Jet Propulsion Laboratory – California Institute of Technology
2 University of Alabama – Huntsville
3 University of Arizona – Steward Observatory
4 Goddard Space Flight Center

© 2021 California Institute of Technology. Government sponsorship acknowledged. The research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This document has been reviewed and determined not to contain export controlled technical data.
Flux Ratio

- Flux ratio ξ is defined as the flux of the planet over the flux of the star F_p/F_s
 - It is wavelength dependent
- When we do photometry, we are measuring a weighted average of the flux ratio
- The working definition of this average flux ratio is:
 - $\tau_f(\lambda)$ is the band filter function, and selects the band
 - $\tau_p(\lambda)$ is the conversion from flux to electrons at detector
 - as we will see, this is more than a throughput and includes many factors – for now we can call it a conversion efficiency
- 5% root square mean error (RSME) Calibration Uncertainty Allocation on F_p/F_s for TTR5 (Band 1 photometry)
Imaging Calibrations - Synopsis

Star Flux
- via placement of star in dark hole and using a calibrated ND filter
- also employs a ‘ladder’ of calibration standard stars
- use dithered images of Neptune or Uranus
- remove common-mode planet features using matched filter

Flat Field
- use dithered images of Neptune or Uranus
- remove common-mode planet features using matched filter

Charge Transfer Inefficiency
- use trap pumping to identify charge traps
- algorithm on ground processes each image for CTI removal

Nonlinearity and K gain
- use photon transfer curve to get detector nonlinearity and conversion gain

Core Throughput
- find planet and off-axis star positions in dark hole
- raster a photometric standard across the dark hole to measure core throughput vs. field position

Image Corrections
- use image data to: remove cosmic ray tails; calibrate EM gain
- algorithm for threshold, coincidence corrections

Detector Noise Background
- Get darks to: remove structure in dark current and CIC
- prepare master dark from large number of frames

Astrometry
- Provide absolute astrometric calibration of EXCAM’s FOV
- geometric astrometric solutions of stellar clusters obs.

Will continue to add & update as additional input becomes available
Absolute Flux Calibrations

• Periodically observe standard calibrator stars
 • Conducted with color filters with and without the neutral density filters (NDs)
 • 4 white dwarfs, 4 A stars, 4 G stars (e.g., HST CALSPEC and JWST calibrator stars)
 • Exploring simplifying these operations
• ND filters are in the focal plane, requiring calibrations
 • Depositions on NDs will manifest as spatial variations
 • ND filter required to observe unocculted host star
 • Localized, reference “sweet spot” will be designated/monitored
 • Spitzer/IRAC heritage
 • Will save time by calibrating only a localized position, rather than the entire ND filter
Astrometric Calibrations

- Observe calibration fields at a number of dither positions, with no coronagraph mask
 - The distortion map calibration fields typically have ~10-100 stars brighter than V~22 pin the unvignetted (7.2 arcsec diameter) field of view per pointing
- HST has established several standard calibration fields mapped to ~1 mas precision, sufficient for CGI
 - 5'x5' region of the Large Magellanic Cloud (in Roman's Continuous Viewing Zone)
 - JWST will observe the same LMC field and additional fields
Core Throughput Calibrations

- Measure core throughput and PSF spatial variations by dithering a star across the FOV
- Sampling patterns are illustrative examples and exact patterns are work to go

Marie Ygouf (JPL)
Charge Transfer Inefficiency

- Charge traps in the pixels temporarily capture and release electrons during parallel and serial readout on their way to the amplifier
 - The traps are caused by radiation damage to the silicon lattice
 - Density of charge traps increases over the mission lifetime of a CCD in a space telescope

Left: HST image with CTI trailing
Right: corrected image
Charge Transfer Inefficiency

- Trap pumping gives locations, energy levels, and release time constants for each trap species
 - Obtain at sensor temperatures: 170 K (nominal), 190 K, 210 K
- EXCAM will be cooled down only during CGI observations. Some fraction of traps will anneal during warm up – changes trap landscape
 - Need to do trap pumping just prior to cool-down and just after warm-up to track changing trap densities
- Obtain darks just before or after each trap pumping sequence
 - Warm pixels in dark frames leave trails that are used to independently determine release time constants and densities
- ArCTIC Python code is a possible CTI corrector, but has not been tested adequately with photon counted images, and may need modifications

*Left: HST image with CTI trailing
Right: corrected image*
Cosmic Rays

- Our baseline is to simply flag the entire cosmic ray impact and mask each out
- Considering correcting for cosmic ray hits to recover underlying data

Ground EMCCD test data showing muon cosmic rays against a backdrop of dark current
(Nathan Bush – JPL)
Darks & Clock Induced Charge

- Darks and Clock Induced Charge will be calibrated by taking many dark frames.
- To save Coronagraph overhead, darks will be collected during WFI primary operations.
Flat Fields

• To correct for variations at three spatial scales:
 • Low - e.g., vignetting
 • Medium – e.g., Hubble “measles”
 • High – e.g., pixel-to-pixel variations
Flat Fields

• No flat lamp, so astrophysical source needed
• No non-sidereal tracking, so flat field source will be “ambushed”
• Flat source will be dithered around focal plane between exposures
 • A single flat field (for a single observing mode), takes ~30 minutes
• Fine steering mirror (FSM) raster during an exposure to flatten source
 • Note: CGI only has ~3 slots available on its onboard memory for raster patterns
• Matched filter to divide shared flat source, leaving residuals, which are the flat field measurements for that epoch
Image Corrections

- Photon counting results in two error sources:
 - Thresholding loss occurs when we record zero electrons when there actually was 1 (or more) image electrons
 - Coincidence loss occurs when we record 1 electron, but there were in fact multiple electrons in the image pixel

- See Nemati 2020 (SPIE) and “Observing Scenario 9 Post-Processing report”¹ by Ygouf et al. (2021) for more details

¹ https://wfirst.ipac.caltech.edu/sims/Coronagraph_public_images.html#CGI_OS9_report
Nonlinearity and K gain

- To correct for non-linear pixel responses and determine the mean K gain, the conversion factor between electrons and average counts for a given EM gain value.
- Apply PTC “differencing + stacking” analysis method.
 - This method forms differences from pairs of frames in same exposure set and then stacks them to form a datacube.
 - Calculate variance for each pixel in the datacube.

Photon Transfer Curve (PTC)

- Slope gives mean $1/K$ gain
- y-intercept gives read noise variance

Nathan Bush (JPL), Guillermo Gonzalez (U. Alabama – Huntsville), Bijan Nemati (U. Alabama – Huntsville)
Polarimetry Calibrations

- Polarization standards are observed to estimate and correct for instrument polarization effects
 - These instrument polarization effects are described by the end-to-end optical system Mueller Matrix (MM)
 - Critical assumption: instrumental polarization is field-invariant
 - MM coefficients will be measured on the sky by observing a minimum of 3 polarization calibrators
 - 1 unpolarized standard
 - 2 polarized standards with precisely-known linear polarization fractions and orientations, as provided by ancillary polarimetry data
 - Identifying specific calibrators needs to be done

- Polarimetric flat fields will also be collected
Spectroscopic Calibrations

- Spectral dispersion scale and orientation
 - Observe an unocculted star and cycling through the sub-band/narrowband filters
- Wavelength zero-point
 - Apply narrowband DM satellite spots to the expected planet offset, while the reference star is occulted
- Slit loss and the line spread function
 - Observe an unocculted star over a grid of PSF-to-slit alignments
Thank you!

Any questions?