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Flux Ratio
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• Flux ratio ! is defined as the flux of the planet over the flux 
of the star Fp/Fs
• It is wavelength dependent

• When we do photometry, we are measuring a weighted 
average of the flux ratio

• The working definition of this average flux ratio is:
• "#(%) is the band filter function, and selects the band

• "'(%)is the conversion from flux to electrons at detector

• as we will see, this is more than a throughput and includes many 
factors – for now we can call it a conversion efficiency

• 5% root square mean error (RSME) Calibration Uncertainty 
Allocation on Fp/Fs for TTR5 (Band 1 photometry)
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Imaging Calibrations - Synopsis

3

Star Flux

: Planet 
: Host Star

"⃗#

"⃗∗

via placement of star 
in dark hole and 
using a calibrated 
ND filter

also employs a 
‘ladder’ of calibration 
standard stars data: on orbit 

processing: on ground

Charge Transfer Inefficiency

use trap pumping to 
identify charge traps

algorithm on ground 
processes each 
image for CTI 
removal

data: on orbit 
processing: on ground

Flat Field

use dithered 
images of Neptune 
or Uranus

remove common-
mode planet 
features using 
matched filter

data: on orbit 
processing: on ground

Core Throughput

find planet and off-
axis star positions in 
dark hole

raster a photometric 
standard across the 
dark hole to measure 
core throughput vs. 
field position

data: on orbit 
processing: on ground

Nonlinearity and K gain

image Uranus or 
Neptune 

use photon transfer 
curve to get detector  
nonlinearity and 
conversion gain

data: on orbit 
processing: on ground

Image Corrections

data: on orbit 
processing: on ground

use image data to:
remove cosmic ray 
tails; calibrate EM gain

algorithm for 
threshold, coincidence 
corrections

Detector Noise Background

data: on orbit 
processing: on ground

Get darks to:
remove structure in 
dark current and 
CIC

prepare master dark 
from large number 
of frames

Astrometry

data: on orbit 
processing: on ground

Provide absolute 
astrometric 
calibration of  EXCAM’s 
FOV

geometric astrometric 
solutions of stellar 
clusters obs.

Will continue to add & update as additional input becomes available



Absolute Flux Calibrations
• Periodically observe standard calibrator stars
• Conducted with color filters with and without the neutral density filters (NDs)

• 4 white dwarfs, 4 A stars, 4 G stars (e.g., HST CALSPEC and JWST calibrator stars)

• Exploring simplifying these operations

• ND filters are in the focal plane, requiring calibrations

• Depositions on NDs will manifest as spatial variations

• ND filter required to observe unocculted host star

• Localized, reference ”sweet spot” will be designated/monitored

• Spitzer/IRAC heritage

• Will save time by calibrating only a localized position, rather than the entire ND filter
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Astrometric Calibrations
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• Observe calibration fields at a number of dither positions, with no 
coronagraph mask

• The distortion map calibration fields typically have ~10-100 stars brighter 
than V~22 pin the unvignetted (7.2 arcsec diameter) field of view per 
pointing

• HST has established several standard calibration fields mapped to 
~1 mas precision, sufficient for CGI

• 5'x5' region of the Large Magellanic Cloud (in Roman's Continuous 
Viewing Zone)

• JWST will observe the same LMC field and additional fields

EXCAM unvignetted FOV 
(7.2’’ diameter)

Sample portion of the
LMC calibration field

(HST ACS, F606W; 6’’x6’’)



Core Throughput Calibrations
• Measure core throughput and PSF spatial variations by 

dithering a star across the FOV
• Sampling patterns are illustrative examples and exact 

patterns are work to go

3 λ/D 8 λ/D
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Marie Ygouf (JPL)



Charge Transfer Inefficiency
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• Charge traps in the pixels temporarily 
capture and release electrons during 
parallel and serial readout on their way 
to the amplifier
• The traps are caused by radiation damage to 

the silicon lattice

• Density of charge traps increases over the 
mission lifetime of a CCD in a space telescope

Left: HST image with CTI trailing
Right: corrected image



Charge Transfer Inefficiency
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• Trap pumping gives locations, energy levels, and release time 

constants for each trap species

• Obtain at sensor temperatures: 170 K (nominal), 190 K, 210 K

• EXCAM will be cooled down only during CGI observations. Some 

fraction of traps will anneal during warm up – changes trap landscape

• Need to do trap pumping just prior to cool-down and just after warm-up to 

track changing trap densities

• Obtain darks just before or after each trap pumping sequence

• Warm pixels in dark frames leave trails that are used to independently 

determine release time constants and densities

• ArCTIC Python code is a possible CTI corrector, but has not been tested 

adequately with photon counted images, and may need modifications

Left: HST image with CTI trailing
Right: corrected image



Cosmic Rays

• Our baseline is to simply flag the 
entire cosmic ray impact and mask 
each out

• Considering correcting for cosmic 
ray hits to recover underlying data

Ground EMCCD test data showing muon cosmic 
rays against a backdrop of dark current

(Nathan Bush – JPL)
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Darks & Clock Induced Charge
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• Darks and Clock Induced Charge will be calibrated by taking many dark 
frames

• To save Coronagraph overhead, darks will be collected during WFI primary 
operations

one frame
avg all frames

other backgrounds

detector noise

Bijan Nemati (U Alabama – Huntsville)



Flat Fields
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• To correct for variations at three spatial 
scales:
• Low - e.g., vignetting

• Medium – e.g., Hubble “measles”

• High – e.g., pixel-to-pixel variations



Flat Fields

Erin Maier (U Arizona – Steward Observatory)

12

• No flat lamp, so astrophysical source needed

• No non-sidereal tracking, so flat field source will be 
“ambushed”

• Flat source will be dithered around focal plane between 
exposures

• A single flat field (for a single observing mode), takes ~30 minutes

• Fine steering mirror (FSM) raster during an exposure to 
flatten source

• Note: CGI only has ~3 slots available on its onboard memory for raster 
patterns

• Matched filter to divide shared flat source, leaving 
residuals, which are the flat field measurements for that 
epoch

CGI’s Unvignetted FOV (7.2” diameter)



Image Corrections
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• Photon counting results in two error sources:

• Thresholding loss occurs when we record zero 
electrons when there actually was 1 (or more) 
image electrons 

• Coincidence loss occurs when we record 1 
electron, but there were in fact multiple 
electrons in the image pixel

• See Nemati 2020 (SPIE) and “Observing 
Scenario 9 Post-Processing report”1 by
Ygouf et al. (2021) for more details

Bijan Nemati (U Alabama – Huntsville)

1 https://wfirst.ipac.caltech.edu/sims/Coronagraph_public_images.html#CGI_OS9_report



Nonlinearity and K gain
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• To correct for non-linear pixel responses and 
determine the mean K gain, the conversion 
factor between electrons and average counts 
for a given EM gain value

• Apply PTC “differencing + stacking” analysis 
method

• This method forms differences from pairs of frames in 
same exposure set and then stacks them to form a 
datacube. 

• Calculate variance for each pixel in the datacube
y-intercept gives read noise variance

Slope gives mean 1/K gain

Photon Transfer Curve (PTC)

reference 
point

Nathan Bush (JPL),
Guillermo Gonzalez (U. Alabama – Huntsville), 

Bijan Nemati (U. Alabama – Huntsville)



Polarimetry Calibrations
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• Polarization standards are observed to estimate and correct for instrument 
polarization effects
• These instrument polarization effects are described by the end-to-end optical system 

Mueller Matrix (MM)
• Critical assumption: instrumental polarization is field-invariant

• MM coefficients will be measured on the sky by observing a minimum of 3 polarization 
calibrators
• 1 unpolarized standard
• 2 polarized standards with precisely-known linear polarization fractions and orientations, as 

provided by ancillary polarimetry data
• Identifying specific calibrators needs to be done

• Polarimetric flat fields will also be collected



Spectroscopic Calibrations
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• Spectral dispersion scale and orientation
• Observe an unocculted star and cycling through the sub-

band/narrowband filters

•Wavelength zero-point
• Apply narrowband DM satellite spots to the expected planet offset, while 

the reference star is occulted

• Slit loss and the line spread function
• Observe an unocculted star over a grid of PSF-to-slit alignments



Thank you!

Any questions?
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