Nancy Grace Roman Space Telescope Coronagraph Instrument Observation Calibrations

Rob Zellem¹ (he/him), Bijan Nemati^{1,2}, Vanessa Bailey¹, Eric Cady¹, Mark Colavita¹, Ewan Douglas³, Guillermo Gonzalez¹, Tyler Groff⁴, Sergi Hildebrandt¹, Bertrand Mennesson¹, Erin Maier³, Marie Ygouf¹, Neil Zimmerman⁴

With support from many at the Jet Propulsion Laboratory, Goddard Space Flight Center, and the Science Investigation Teams

1 Jet Propulsion Laboratory – California Institute of Technology 2 University of Alabama – Huntsville 3 University of Arizona – Steward Observatory 4 Goddard Space Flight Center

© 2021 California Institute of Technology. Government sponsorship acknowledged. The research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This document has been reviewed and determined not to contain export controlled technical data.

Flux Ratio

- Flux ratio ξ is defined as the flux of the planet over the flux of the star Fp/Fs
 - It is wavelength dependent
- When we do photometry, we are measuring a weighted average of the flux ratio
- The working definition of this average flux ratio is:
 - $au_f(\lambda)$ is the band filter function, and selects the band
 - $au_p(\lambda)$ is the conversion from flux to electrons at detector
 - as we will see, this is more than a throughput and includes many factors for now we can call it a conversion efficiency
- 5% root square mean error (RSME) Calibration Uncertainty Allocation on Fp/Fs for TTR5 (Band 1 photometry)

 $\xi = \frac{\int F_p \tau_p \tau_f \, d\lambda}{\int F_s \tau_p \tau_f \, d\lambda}$

weighted sums!

Imaging Calibrations - Synopsis

Will continue to add & update as additional input becomes available

Absolute Flux Calibrations

- Periodically observe standard calibrator stars
 - Conducted with color filters with and without the neutral density filters (NDs)
 - 4 white dwarfs, 4 A stars, 4 G stars (e.g., HST CALSPEC and JWST calibrator stars)
 - Exploring simplifying these operations
- ND filters are in the focal plane, requiring calibrations
 - Depositions on NDs will manifest as spatial variations
 - ND filter required to observe unocculted host star
 - Localized, reference "sweet spot" will be designated/monitored
 - Spitzer/IRAC heritage
 - Will save time by calibrating only a localized position, rather than the entire ND filter

Astrometric Calibrations

- Observe calibration fields at a number of dither positions, with no coronagraph mask
 - The distortion map calibration fields typically have ~10-100 stars brighter than V~22 pin the unvignetted (7.2 arcsec diameter) field of view per pointing
- HST has established several standard calibration fields mapped to ~1 mas precision, sufficient for CGI
 - 5'x5' region of the Large Magellanic Cloud (in Roman's Continuous Viewing Zone)
 - JWST will observe the same LMC field and additional fields

Core Throughput Calibrations

- Measure core throughput and PSF spatial variations by dithering a star across the FOV
 - Sampling patterns are illustrative examples and exact patterns are work to go

Charge Transfer Inefficiency

- Charge traps in the pixels temporarily capture and release electrons during parallel and serial readout on their way to the amplifier
 - The traps are caused by radiation damage to the silicon lattice
 - Density of charge traps increases over the mission lifetime of a CCD in a space telescope

Left: HST image with CTI trailing Right: corrected image

Charge Transfer Inefficiency

- Trap pumping gives locations, energy levels, and release time constants for each trap species
 - Obtain at sensor temperatures: 170 K (nominal), 190 K, 210 K
- EXCAM will be cooled down only during CGI observations. Some fraction of traps will anneal during warm up changes trap landscape
 - Need to do trap pumping just prior to cool-down and just after warm-up to track changing trap densities
- Obtain darks just before or after each trap pumping sequence
 - Warm pixels in dark frames leave trails that are used to independently determine release time constants and densities
- ArCTIC Python code is a possible CTI corrector, but has not been tested adequately with photon counted images, and may need modifications

Left: HST image with CTI trailing Right: corrected image

Cosmic Rays

- Our baseline is to simply flag the entire cosmic ray impact and mask each out
- Considering correcting for cosmic ray hits to recover underlying data

Ground EMCCD test data showing muon cosmic rays against a backdrop of dark current (Nathan Bush – JPL)

Darks & Clock Induced Charge

- Darks and Clock Induced Charge will be calibrated by taking many dark frames
- To save Coronagraph overhead, darks will be collected during WFI primary operations

Bijan Nemati (U Alabama – Huntsville)

Flat Fields

- To correct for variations at three spatial scales:
 - Low e.g., vignetting
 - Medium e.g., Hubble "measles"
 - High e.g., pixel-to-pixel variations

Flat Fields

- No flat lamp, so astrophysical source needed
- No non-sidereal tracking, so flat field source will be "ambushed"
- Flat source will be dithered around focal plane between exposures
 - A single flat field (for a single observing mode), takes ~30 minutes
- Fine steering mirror (FSM) raster during an exposure to flatten source
 - Note: CGI only has ~3 slots available on its onboard memory for raster patterns
- Matched filter to divide shared flat source, leaving residuals, which are the flat field measurements for that epoch

Erin Maier (U Arizona – Steward Observatory)

Image Corrections

- Photon counting results in two error sources:
 - Thresholding loss occurs when we record zero electrons when there actually was 1 (or more) image electrons
 - Coincidence loss occurs when we record 1 electron, but there were in fact multiple electrons in the image pixel
- See Nemati 2020 (SPIE) and "Observing Scenario 9 Post-Processing report"¹ by Ygouf et al. (2021) for more details

¹ https://wfirst.ipac.caltech.edu/sims/Coronagraph_public_images.html#CGI_OS9_report

Nonlinearity and K gain

- To correct for non-linear pixel responses and determine the mean K gain, the conversion factor between electrons and average counts for a given EM gain value
- Apply PTC "differencing + stacking" analysis method
 - This method forms differences from pairs of frames in same exposure set and then stacks them to form a datacube.
 - Calculate variance for each pixel in the datacube

Nathan Bush (JPL), Guillermo Gonzalez (U. Alabama – Huntsville), Bijan Nemati (U. Alabama – Huntsville)

Polarimetry Calibrations

- Polarization standards are observed to estimate and correct for instrument polarization effects
 - These instrument polarization effects are described by the end-to-end optical system Mueller Matrix (MM)
 - Critical assumption: instrumental polarization is field-invariant
 - MM coefficients will be measured on the sky by observing a minimum of 3 polarization calibrators
 - 1 unpolarized standard
 - 2 polarized standards with precisely-known linear polarization fractions and orientations, as provided by ancillary polarimetry data
 - Identifying specific calibrators needs to be done
- Polarimetric flat fields will also be collected

Spectroscopic Calibrations

- Spectral dispersion scale and orientation
 - Observe an unocculted star and cycling through the subband/narrowband filters
- Wavelength zero-point
 - Apply narrowband DM satellite spots to the expected planet offset, while the reference star is occulted
- Slit loss and the line spread function
 - Observe an unocculted star over a grid of PSF-to-slit alignments

Thank you!

Any questions?

